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The point clouds scanned by a 3D laser scanner may be affine transformed when the size and posture of the
objects being scanned are different. This type of problem is common, but few algorithms can solve it. Therefore,
this Letter proposes a parallel registration algorithm. The algorithm eliminates the effects of the affine matrix in
the point cloud, based on a simple whitening operation. Moreover, it also has strong anti-noise performance. The
algorithm proposed in this Letter is not only simple in structure, but also shows excellent effects in practical
applications and simulations.
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Registration technology is an important digital detection
technology that is used in many fields such as NDT (non-
destructive testing), pattern recognition, virtual reality,
robots, and related fields[1,2]. At present, global registra-
tion[3–6] and local registration[7–9] are the two main research
directions. Since the scale of the point clouds may be in-
consistent, scale registration[10–12] is proposed based on
global registration. The scale registration algorithm gen-
erally introduces a scale coefficient based on the global
registration algorithm. However, in practical engineering
applications, due to different types of three-dimensional
laser scanners, thermal expansion of the objects being
scanned, and differences in the types of scanned objects,
point clouds may be arbitrarily affine transformed. This
problem is very common, for example, the relationship be-
tween iphone 6 and iphone 6 plus is an affine transforma-
tion. Therefore, we focus on the problem of arbitrary affine
point clouds registration.
Besl et al.[3] proposed the classic iterative closest point

(ICP) algorithm in 1992, which is commonly used for
point set registration, but it is not suitable for affine regis-
tration. On the basis of ICP, many scholars are committed
to improving the ICP algorithm in order to complete a
more complex point set registration. Ying et al.[10] put for-
ward a scale registration algorithm that introduced an af-
fine factor and searched for seven undetermined variables
to register point clouds on different scales. In Ref. [11],
Makovetskii et al. presented an affine registration algo-
rithm based on a point-to-plane approach, which is used
to register point clouds that are affine transformed in
three fixed directions. The methods[12,13] solved the same
problem like in Ref. [11]. A multi-scale affine registration
algorithm[14] can only be used for image registration. In
Ref. [15], an affine registration algorithm of point sets
using ICP and ICA (independent component analysis)
was proposed. Indeed, the algorithm can solve the affine
registration problem. However, both ICA and ICP require

iterative operations, and the ICA algorithm requires
the order of point sets. Some scholars also presented a
correntropy-based method to improve the affine ICP[16,17].
Those algorithms can obtain good results on some simple
affine registrations while they cannot register point clouds
with an arbitrary affine transformation.

Some algorithms[18–22] based on probability estimation
have been developed to solve the nonrigid registration
problem. They use Gaussian mixture models (GMMs);
the coherent point drift (CPD) algorithm[18] is a classic ex-
ample that is widely used for point cloud registration.
These algorithms can achieve rigid and nonrigid registra-
tion for point clouds; they avoid the iteration of the ICP,
but the probability estimation algorithm relies on the EM
(expectation maximization algorithm). The EM iteration
process may consume more time than the ICP. More re-
cently, Ma et al.[23] proposed the global and local structure
preserving point set registration (PRGLS) algorithm,
which improved CPD by obtaining a binary corresponding
matrix that updates the transformation under preserving
global and local structures. Zhang et al.[24] also used the
method of the global-local structural preservation to solve
a nonrigid point set registration. In addition, Ma et al.,
who keep focusing on spatial structure preservation, pro-
posed locality preserving matching (LPM)[25] and they put
forward the MR-RPM algorithm[26] by learning nonrigid
transformation between two given point sets with mani-
fold regularization to complete the registration. It has
to be said that these methods have achieved good registra-
tion results, but they take a relatively long time to com-
plete the registration when they are applied to large-scale
3D point cloud registration.

As in engineering applications, arbitrary affine phenom-
ena are common in point cloud registration, and given that
there are currently few affine algorithms to solve such prob-
lems, and some classic nonrigid registration algorithms
either run for a long time or have higher requirements
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for operating equipment, this Letter focuses on how to solve
the relationship between two given point sets in a simple
way and how to accurately and quickly estimate the affine
transformation. Finally, we propose a simple structured
and fast affine registration algorithm.
The contributions of this Letter include the following

three aspects. First, the whitening operation is introduced
to the point set registration problem to find the relation-
ship between the two point sets, which makes the affine
registration problem be a rigid registration problem.
Second, in the relationship after the whitening operation,
the global vector features of point clouds are introduced
and combined with the least squares method to achieve
a fast coarse registration. Third, fast registration is pro-
vided for the proposed method using parallel computing,
especially for large-scale 3D point clouds, which means the
algorithm can work on low-performance computers.
Let a target point cloudΩ be the point set fp1; p2;…; png

and a source point cloud Γ be the point set fq1; q2;…; qng in
R3. Furthermore, assume that the relationship between
points in Ω and Γ is one-to-one mapping. Without loss
of generality, a reversible operator is defined as

T• ¼ A•þ p0; (1)

where the affine matrix A ∈ R3, RankðAÞ ¼ 3 and the
translation vector p0 ¼ ðx0; y0; z0ÞT .
The registration problem of the two point clouds is to

find the reversible operator T• so that TðpkÞ is infinitely
close to qk . Then the corresponding point between pk and
qk is as follows:

qk ¼ TðpkÞ: (2)

How to obtain the reversible operator is the key point in
registration, and many researchers describe the problem
using a cost function

JðTÞ ¼
Xn
k¼1

‖TðpkÞ− qk‖
2
; (3)

where ‖·‖ represents 2-norm, and further minimizes
the cost function to obtain an estimate of the reversible
operator

T̂ ¼ argmin
T

JðTÞ: (4)

Let the target point cloud be matrix X , and the
source point cloud be matrix Y and X ¼ fp1; p2;…; png,
Y ¼ fq1; q2;…; qmg. Then,

Y ↔ AX þ p0I n; (5)

where I n ∈ R1×n is the vector whose elements are all 1, and
↔ indicates that two point clouds have been registered.
Since the relationship between point clouds does not

correspond exactly, ¼ cannot be used to describe their
relationship.

We first remove the mean of the point clouds and ensure
that the center of the point clouds is at the origin of the
coordinate space. After the mean value is removed, the
point clouds are as follows:

8<
:

~Y ¼ Y −

�
1
m

Pm
k¼1 qk

�
Im;

~X ¼ X −

�
1
n

Pn
k¼1 pk

�
I n:

ð6Þ

Equation (7) can be obtained by the principal compo-
nent analysis (PCA) method:

8<
:

1
m

~Y ~YT ¼ QYΛYQT
Y ;

1
n
~X ~XT ¼ QXΛXQT

X :
ð7Þ

In fact, ~Y ↔ A ~X . According to Eq. (7) and statistical
principles, Eq. (8) can be obtained:

1
n
A ~X ~XTAT ¼ 1

m
~Y ~YT . (8)

Then, Eq. (8) can be rewritten as

AQXΛXQT
XA

T ¼ QYΛYQT
Y : (9)

Equation (9) can be decomposed into two parts. Since
the decomposition is not unique, there must be an
orthogonal matrix R that satisfies

AQXΛ
1
2
X ¼ QYΛ

1
2
YR: (10)

In addition, the two sets of point clouds can be whitened
as follows:

�
Ŷ ¼ Λ−1

2
Y QT

Y
~Y ;

X̂ ¼ Λ−1
2

X QT
X
~X :

ð11Þ

By Eqs. (5), (10), and (11),

RX̂ ↔ Ŷ ; (12)

where the relationship between X̂ and Ŷ is a rigid
transformation.

At present, many algorithms[3–7,14,15] can solve the
registration problem in Eq. (12). Here, we give a fast
algorithm to solve it. Define the global structure feature
and introduce a continuous bounded nonlinear real func-
tion cluster

fg1; g2;…; gkg; (13)

where 0 < M 1 ≤ gk ≤ M 2, and M 1 and M 2 are the infi-
mum and supremum of gk , respectively. The global vector
features of point clouds X̂ and Ŷ are defined as
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8<
:

Cj
X ¼ 1

n

Pn
k¼1 gjð‖x̂k‖Þx̂k ;

Cj
Y ¼ 1

m

Pm
k¼1 gjð‖ŷk‖Þŷk ;

ð14Þ

where x̂k and ŷk denote the kth column vector of X̂ and Ŷ ,
respectively. After taking the weighted average of the
data, some features of the point cloud become more stable.
According to statistical principles,

Cj
Y ¼ 1

n

Xm
k¼1

gjð‖Rx̂k‖ÞRx̂k : (15)

According to the linear operator theory, the orthogonal
matrix R is a unitary matrix. Then,

�
‖R‖ ¼ 1;
‖Rx‖ ¼ ‖x‖; ∀x ∈ R3.

ð16Þ

Clearly, Eq. (16) can be rewritten as

Cj
Y ¼ RCj

X : (17)

For convenience, the characteristic matrices for two
point clouds are defined as

�
Xe ¼ ðC1

X ;C
2
X ;…;C

k
X Þ

Ye ¼ ðC1
Y ;C

2
Y ;…;C

k
Y Þ

; k > 2: (18)

Then, the following equation can be derived from
Eqs. (17) and (18):

RXe ¼ Ye: (19)

According to the least squares method,

R ¼ YeXe
T ðXeXe

T Þ−1: (20)

According to the singular value decomposition,

R ¼ UΣVT : (21)

Considering the effect of the calculation error, R may
not be an orthogonal matrix. Therefore, R is corrected to

R̂ ¼ UΣT : (22)

Clearly,

R ~X ↔ ~Y : (23)

The above algorithm runs fast in computers, and its
step is very simple. Therefore, the algorithm is called a fast
algorithm.
However, there may be some errors in the previous

registration process. Then, to further register the point
cloud, a cost function JðR; tÞ can be built,

JðR; tÞ ¼ ‖RX̂ þ tI n − Z‖
2

F
; (24)

where Z represents the corresponding point of X̂ in Ŷ ;
‖·‖F stands for the Frobenius norm; and t is the transla-
tion vector. Minimize JðR; tÞ and the optimal parameters
can be obtained. Clearly, the registration Eq. (22) may
require multiple calculations. Then

8>><
>>:
ðRðkþ1Þ; tðkþ1ÞÞ ¼ argmin

Pn
i¼1 ‖RðkÞxi þ tðkÞ − zðkÞi ‖

2
;

Rð0Þ ¼ R̂; tð0Þ ¼ ð 0 0 0 ÞT ;
st:RTR ¼ RRT ¼ I ;

ð25Þ

where zðkÞi denotes the ith column vector of Z ðkÞ and k is
the number of iterations. In addition, there may be an
error in the whitening process, hence R may not be an
orthogonal matrix. Then, Eq. (25) can be reduced to

8>><
>>:
ðRðkþ1Þ; tðkþ1ÞÞ ¼ argmin

Pn
i¼1 ‖RðkÞxi þ tðkÞ − zðkÞi ‖

2
;

Rð0Þ ¼ R̂; tð0Þ ¼ ð 0 0 0 ÞT ;
st: jλðRÞj ∈ ð1− ε; 1þ εÞ;

ð26Þ

where ε ¼ 0.5 in the experiment. However, it is important
to choose which iteration formula to use. In order to
quickly calculate the optimal value, we use a parallel com-
puting structure. That is, two iteration formulas are si-
multaneously calculated for several cores. An optimal
convergent solution ðR�; t�Þ can be obtained with a differ-
ential optimization algorithm. Then

QYΛ
1
2
YR

�Λ−1
2

X QT
XX

þ
�
QYΛ

1
2
Y t

� þ 1
m

Xm
k¼1

qk −
1
n

Xn
k¼1

pk

�
I n ↔ Y : (27)

Further,

8<
:
Â ¼ QYΛ

1
2
YR

�Λ−1
2

X QT
X ;

p̂0 ¼ QYΛ
1
2
Y t

� þ 1
m

Pm
k¼1 qk −

1
n QYΛ

1
2
YR

�Λ−1
2

X QT
X

Pn
k¼1 pk :

ð28Þ

For convenience, we call the algorithm proposed
in this Letter as the whitening iteration closest point
(Whitening-ICP) algorithm. The algorithm flow is as
follows.

The time complexity of Step 1 in the Whitening-ICP
algorithm is Oð1Þ, the time complexity of Step 2 is
OðnÞ, Step 3 cost Oð1Þ complexity, and the major cost
is Step 4 that searches the nearest point in two point sets
by a Delaunay irregular network; its complexity is close to
Oðn lognÞ, so the time and space complexities of our
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method can be simply written as Oðn log nÞ and OðnÞ,
respectively.
To prove the effectiveness of the algorithm proposed in

this Letter, Bunny point cloud data provided by Stanford
University and Face point cloud data provided by CPD
were used for registration verification. The simulation
was based on MATLAB 2016a, whose environment was
configured for a 2.5 GHz CPU with 8 GB RAM.
In this section we consider the case where the point

cloud is disturbed by white noise. The registration result
of the point cloud shown in Fig. 1 is when the signal-to-
noise ratio (SNR) is 20 dB.
It can be seen from Fig. 1 that the source point cloud

is very unclear because it is affine transformed and dis-
turbed by noise. When both point clouds are whitened,
the outline of the source point cloud can be seen roughly.

This fully proves that the whitening process is very
effective. In order to verify the stability of the algorithm,
experiments were carried out under different SNRs. The ex-
perimental results are shown in Table 1 and Fig. 2 in which
the root mean square error (RMSE) representation is

RMSE ¼ 1
n
‖ÂX þ p̂0I n − Z‖F ; (29)

where Z is the corresponding point of the point cloudAX þ
p0I n in the point cloud Y .

Taking the Bunny point cloud (approximately 31,600
points) as an example, we test the accuracy and the
elapsed time of several algorithms: CPD[18], Affine-ICP[15],
MDAR[13], and the algorithm proposed in this Letter.
In order to prove the effectiveness of the algorithm in
this Letter, we calculated the average running time and
registration error on 100 trials in Table 1. In addition,
to make a quantitative comparison of different methods,
we analyzed the standard deviation of the errors for all the
trials in Fig. 2. It can be seen from Table 1 and Fig. 2 that
the Whitening-ICP algorithm has a strong anti-noise
performance.

In order to better verify the effect of an arbitrary
affine registration, a Face point cloud (392 points) was
added for an affine registration test. At the same time,
we added a state-of-the-art classic algorithm PR-GLS[23]

Whitening-ICP Algorithm

Input: Target point cloud X and source point cloud Y ;

Step 1: Remove the mean of the point clouds X and Y using Eq. (6);

Step 2: Whiten X and Y using Eqs. (7) and (11);

Step 3: Estimate the value of R using Eq. (20);

Step 4: Parallel compute the following two steps:

Step 4.1: Optimize Eq. (25) until
Pn

i¼1 ‖RðkÞxi þ tðkÞ − zðkÞi ‖
2
<

Pn
i¼1 ‖Rðkþ1Þxi þ tðkþ1Þ − zðkþ1Þ

i ‖
2
;

Step 4.2: Optimize Eq. (26) until
Pn

i¼1 ‖RðkÞxi þ tðkÞ − zðkÞi ‖
2
<

Pn
i¼1 ‖Rðkþ1Þxi þ tðkþ1Þ − zðkþ1Þ

i ‖
2
;

Step 5: Using Eq. (28), estimate the parameters and register the point clouds.

Fig. 1. Schematic diagram of the registration process: (a) initial
state, (b) point clouds after being whitened, (c) point cloud after
registration.

Table 1. Registration Effect Under Different Signal-to-Noise Ratios

Metric SNR CPD Affine-ICP MDAR Whitening-ICP

Ave. Error (mm) 20 0.6834 1.8235 0.9731 0.2641

25 0.6882 1.9111 0.9208 0.3684

30 0.1825 2.3022 0.6375 0.0788

35 0.6237 2.0444 0.8572 0.0612

Ave. Time (s) 20 1219 195.2 43.6 40.3

25 1410 170.9 28.2 52.8

30 1484 344.6 24.9 19.4

35 1330 70.3 41.5 13.4
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for comparison. Since PR-GLS makes MATLAB exceed
the memory limit when performing large-scale point cloud
registration, here we only use the Face point cloud for test-
ing. It can be seen from Figs. 3 and 4 that CPD and
MDAR distort the point cloud, Affine-ICP cannot register
the point cloud under any affine change at all, and the
registration effect of PR-GLS is not ideal. By contrast,
Whitening-ICP can achieve the best performance. In
Tables 1 and 2, obviously, the time consumption of
Whitening-ICP is relatively optimal. In Table 2, although
the error in CPD is the smallest, it consumes dozens of
times the time of Whitening-ICP. So, it can be concluded
that Whitening-ICP has the best performance.
In this Letter, we use the portable laser scanner (HAN-

DYSCAN 700TM portable laser scanner) to collect data
from objects. Considering the existence of the ground
truth affine transformation, we first label the object
and then the object can be automatically located by
the scanner in the scanning process so that the interference

of the ground and the background can be ignored. The
data collected by the scanner was exported to the software
MeshLab and the point clouds were reconstructed, which
is shown in Fig. 5.

Figures 5(a) and 5(b) show the scanned objects and
scanned point cloud data (Bottle: 21,400 points, Cup:
34,000 points, Banana: 16,800 points). As can be seen from
Fig. 5(b), there are holes in the surface of some point
clouds. The collected point cloud data is not complete
due to the reflection of the object surface. Therefore, regis-
tering point clouds during the experiment is more challeng-
ing than in simulation. In order to fully demonstrate the
superiority of the algorithm, this Letter uses CPD[18],
Affine-ICP[15], and MDAR[13] to compare with the algo-
rithm. Their registration results are shown in Fig. 6.

Figure 6 shows that the other methods have shown bet-
ter performance except for Affine-ICP because the three
objects did not undergo obvious affine deformation during
actual scanning. However, it can be seen from Table 3 that
Whitening-ICP has better stability and accuracy and
higher efficiency.

In simulations and experiments, the Affine-ICP algo-
rithm often has poor registration results due to the limi-
tations of the convergence domain. For CPD, in fact, we
can also adjust the parameters of the CPD algorithm so
that it may have a better registration effect. However,
the CPD depends on the initial state of the point clouds
and inevitably distorts the point cloud. MDAR is just a
multi-directional affine algorithm; it allows the point
cloud to expand and contract in the three directions of
X, Y, and Z. Therefore, its effect is not stable during
arbitrary affine registration, which depends on the degree
of affine deformation. However, Whitening-ICP shows
excellent point clould registration results under arbitrary
affine transformation.

In conclusion, we proposed a novel approach named
Whitening-ICP for point cloud registration under arbi-
trary affine transformation. Our approach uses a simple
whitening operation to find the relationship between
two point clouds, and the global vector features of point
clouds are introduced and combined with the least squares

Fig. 2. Comparison of Whitening-ICP with Affine-ICP, CPD,
and MDAR on different SNR for the Bunny point cloud. Error
bars: registration error means and standard deviations over 100
trials.

Fig. 3. Bunny point cloud registration effect of several algo-
rithms under the condition that the point cloud is affine
transformed.

Fig. 4. Face point cloud registration effect of several algorithms
under the condition that the point cloud is affine transformed.
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method to achieve fast coarse registration. The proposed
algorithm based on parallel computing can work on low-
performance computers. We validated the effectiveness of
our method both in simulations and experiments, and it

realizes a more advanced performance compared with
other state-of-the-art methods. However, Whitening-ICP
can register complete point clouds. When the point clouds
are incomplete, Whitening-ICP may fail to register them.
We will improve this algorithm in future work and try to
solve this problem.

This work was supported by the Science and Technol-
ogy Supporting Program Project of Sichuan Province
(Nos. 2018GZ0226 and 2017YFB0405101).
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