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In this Letter, we find that Morse potential (proposed about 90 years ago) could be connected to Coulomb
potential (or Newton potential) and harmonic potential (or Hooke potential) by conformal mappings. We
thereby design a new conformal lens from Morse potential, Eaton lens, and Luneburg lens and propose a series
of generalized Eaton/Luneburg lenses.We find that this Morse lens is a perfect self-focusing asymmetric lens that
differs from a Mikaelian lens. Our theory provides a new insight to Morse potential and other traditional
potentials, and revisits their classical applications on designing lenses.
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Traditional potentials, such as Coulomb potential and
harmonic potential, have been widely used in quantum
mechanics. In addition, by analogy, their classical poten-
tials, e.g., Newton potential and Hooke potential, to geo-
metric optics[1], people proposed the Eaton lens[2] and
Luneburg lens[3]. The conventional Eaton and Luneburg
lenses are familiar with the perfect retroreflector and
omnidirectional focusing, where they are of finite volumes.
However, if the lenses are infinite and cover entire spaces,
they can also perform a perfect imaging without aberra-
tion and are called absolute instruments[4,5]. Absolute
instruments have cavity modes with eigenfrequency spec-
tra of tight groups that are almost equidistantly spaced[6].
Such properties in wave optics are helpful in designing
conformal cloaks[7]. There are also many other absolute
instruments, such asMaxwell’s fisheye lens[8], the Lissajous
lens[9], and invisible lenses[1]. In particular, recently people
have found that Maxwell’s fisheye lens could be connected
to a Mikaelian lens from an exponential conformal map-
ping[1,10–12]. This lens is known for its symmetric refractive
index profile and perfect imaging and has been imple-
mented in visible frequencies from a curved waveguide,
demonstrating the self-focusing and Talbot effect[11].
In fact, there are many other traditional potentials,

such as the Yukawa potential and Lennard–Jones (LJ)
potential, which might also be useful in classical optical
designs. In this Letter, we will recall the Morse potential
proposed about 90 years ago[13]. We will prove that, from a
conformal mapping aspect, it is related to the Coulomb
potential or harmonic potential. Therefore, we can pro-
pose a core conformal lens from this potential and generate
an Eaton lens, Luneburg lens, and even a more generalized
form. We shall call this lens a Morse lens and provide the
insight with the help of ray tracing simulations. We will
also provide a new potential which we call the 6–10 poten-
tial for perfect imaging, and is different from the famous
6–12 potential or LJ potential. We hope to show a classical

optics insight for this old potential and new lens and
demonstrate the ability of lensing designs by combining
quantum mechanics and transformation optics[7,14,15].

Let us start from Eaton lens with a profile of

n ¼
������������
2
r
− 1

r
; (1)

as shown by the red curve in Fig. 1(a). By the connection
of geometric optics and classical mechanics[1],

n2 ¼ 2E − 2V : (2)

This lens is related to V ¼ − 1
r for E ¼ − 1

2 , which is a
Coulomb potential or a Newton potential. By performing
an exponential conformal mapping[12], we can get another
lens with a profile of

n ¼
��������������������
2ex − e2x

p
; (3)

as shown by the red curve in Fig. 1(b). Let us recall the
Morse potential[13]

V ¼ Dð1− e−aðx−x0ÞÞ2 −D; (4)

which is an ideal and typical anharmonic potential with
exact solutions for diatomic molecules in quantum me-
chanics, where D is the potential well depth, a is the
potential well width, and x0 is the equilibrium position
(which we will set as 0 in this Letter). In addition, even
in classical mechanics, this potential has analytical solu-
tions[16]. By choosing E ¼ 0, the conformal lens in Eq. (3)
from the Eaton lens is related to the Morse potential with
D ¼ 1

2 and a ¼ −1.
Now we come to the Luneburg lens with a profile of

n ¼
��������������
2− r2

p
; (5)
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as shown by the green curve in Fig. 1(a). This lens is re-
lated to V ¼ 1

2 r
2 for E ¼ 1, which is a harmonic potential

or a Hooke potential. With the same exponential mapping,
the conformal lens with a profile of

n ¼
����������������������
2e2x − e4x

p
ð6Þ

is obtained as shown by the green curve in Fig. 1(b). This
is also related to the Morse potential with D ¼ 1

2 and
a ¼ −2 for E ¼ 0.
We therefore propose a general lens with a profile of

n ¼
�����������������������������
2e−ax − e−2ax

p
; (7)

which we shall call the Morse lens. The related conformal
lens with a cylindrical or spherical symmetry could be
written as

n ¼
������������������������������
2

1
raþ2 −

1
r2aþ2

r
; (8)

which we shall call the generalized Eaton/Luneburg lens.
With E ¼ 0, the potential energy is V ¼ 1

2 ð 1
r2aþ2 −

2
raþ2Þ,

and is related to a general form of the LJ potential V ¼
λn
rn −

λm
rm (where λn and λm are parameters). For example, for

a ¼ 1, n ¼
�������������
2
r3 −

1
r4

q
, which is another form of the Eaton

lens with a repulsive potential core, and we shall call it
an anti-Eaton lens. The refractive index profile of the
anti-Eaton lens is plotted by the blue curve in Fig. 1(a),
and the related Morse lens is plotted by the blue curve in
Fig. 1(b), which is actually the same as that of the Eaton
lens by making x ¼ −x.

Now we perform ray tracing simulations for the various
lenses above using the commercial software COMSOL
Multiphysics. For example, in Fig. 1(c) for the Eaton lens
(a ¼ −1), all rays from a point [say (1,0) here], will come
back for self-imaging in elliptic trajectories. All the
ellipses share the same focus point, i.e., the origin. For
the related Morse lens in Fig. 1(e), all rays from a point
[e.g., (−1;−16)] will have perfect imaging along x ¼ −1
with a period of 2π. For the Luneburg lens (a ¼ −2) in
Fig. 1(d), all rays from a point [(1,0) here] will have
a perfect image at another point at the opposite side
[i.e., (−1; 0) here]. The trajectories are also ellipses but
share the same center, the origin. The related Morse lens
is plotted in Fig. 1(f). All rays from a point [(−1;−16)
here] will have perfect imaging along x ¼ −1 but with a
period of π. Therefore, the intrinsic perfect imaging or
self-imaging effect for the Luneburg lens and the Eaton
lens is inherited from that of the Morse lens, with different
periods. In this way, the Eaton lens and the Luneburg lens
were proved to be connected simply by a power conformal
mapping[1].

Now we come to explore the effect of lenses in the
generalized form, i.e., Eq. (8). Similar to the generalized
Maxwell’s fish-eye lens, for a different order a, the trajec-
tories are also different. In Figs. 2(a)–2(d), we plot the
trajectory for each lens with a ¼ −1; a ¼ −2; a ¼ −3;
a ¼ −4; respectively. We find that for a ¼ −3, the trajec-
tory is in a triangular shape, while for a ¼ −4, the
trajectory is in a square shape (for a ¼ −1 and a ¼ −2,
they are ellipses). In addition, there are absðaÞ images
(including self-image) for each lens (not plotted here). For
a positive a, the central potential changes from attractive
to repulsive. Therefore the trajectory is changed accord-
ingly with a concaves, as plotted in Figs. 2(e)–2(h):
a ¼ 1; a ¼ 2; a ¼ 3; a ¼ 4; respectively. The number of
images (including self-image) is a, which is similar to
the attractive ones (we will only study one of them in
the later section).

If a ¼ 0, the refractive index profile changes into that of
an electromagnetic black hole[17–19], i.e., n ¼ 1

r. If a is not an
integer but a rational number, we can always write it
as a ¼ ∓ p

q . For example, in Figs. 3(a)–3(c), we plot the
trajectory for each lens with a ¼ − 1

2 ; a ¼ − 3
2 ; a ¼ − 5

2 ;
respectively. There are p images (including self-image)
for each lens (not plotted here), while the light trajectories

Fig. 1. (a) The refractive index profiles for the Eaton lens (red),
the Luneburg Lens (green) and the anti-Eaton lens (blue).
(b) Refractive index profile for the Morse lens with a ¼ −1 (red),
a ¼ −2 (green), and a ¼ 1 (blue). (c) Ray trajectories from a
point of (1, 0) on the Eaton lens. (d) Ray trajectories from a point
of (1, 0) on the Luneburg lens. (e) Ray trajectories from a point of
(−1;−16) on the Morse lens with a ¼ −1. (f) Ray trajectories
from a point of (−1;−16) on the Morse lens with a ¼ −2.
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will travel around the origin q times (qπ) before they come
back as a self-image. For a positive a, the imaging proper-
ties are similar to the negative cases, while there are also p
concaves due to the repulsive potentials, as shown in
Figs. 3(d)–3(f) for a ¼ 1

2; a ¼ 3
2; a ¼ 5

2; respectively. Note
that the concave in Fig. 3(d) is very weak. It is clear after
enlarging the figure. If a is an irrational number, the lens is
no longer an absolute instrument and there is no imaging
or self-imaging effect.
Finally, let us come to discuss why it is important to

design a perfect imaging lens. Following our previous
results[7,20], any kind of cavity mode could be used in
conformal cloaks. However, if the perfect imaging is
valid, the cloaking effect will be very robust[7]. For a gen-
eral cavity mode, the effect would be compromised[20].

Moreover, it will also become useful to design devices to
transfer information accurately, for example, the Mikaelian
lens with the Talbot effect. Therefore, to find more exact
classical mechanics solutions similar to simple harmonic os-
cillators is vital[16]. In general, most of traditional potentials
do not have this property. For example, the famous 6–12
potential or the LJ potential [we will use V ¼ 1

2 ð 1
r12 −

2
r6Þ

to illustrate it] will not produce an absolute instrument.
Nevertheless, by choosing a ¼ 4, we will have a 6–10 poten-
tial [V ¼ 1

2 ð 1
r10 −

2
r6Þ], which is related to a generalized

Eaton/Luneburg lens. Figure 4(a) shows the comparison
between these two potentials. The red one is for the 6–10
potential, while the green one is for the 6–12 potential.
Accordingly, we can obtain the related refractive index pro-
files in Fig. 4(b). Although the potentials or refractive index

Fig. 2. The refractive index distribution (contour map) and trajectory (black curve) for a ray emitted from (1, 0) at 45° on a
generalized Eaton/Luneburg lens with (a) a ¼ −1; (b) a ¼ −2; (c) a ¼ −3; (d) a ¼ −4; (e) a ¼ 1; (f) a ¼ 2; (g) a ¼ 3; (h) a ¼ 4.

Fig. 3. The refractive index distribution (contour map) and trajectory (black curve) for a ray emitted from (1, 0) at 45° on a
generalized Eaton/Luneburg lens with (a) a ¼ − 1

2 ; (b) a ¼ − 3
2 ; (c) a ¼ − 5

2 ; (d) a ¼ 1
2; (e) a ¼ 3

2; (f) a ¼ 5
2.
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profiles are very close to each other, the trajectories and im-
aging properties are very different. For the generalized lens,
there are four perfect images (or self-image), as shown in
Fig. 4(c), which has also been discussed in the previous sec-
tion. For the related lens from the 6–12 potential (whose

refractive index profile is n ¼
��������������
2
r6 −

1
r12

q
), there is no perfect

imaging effect, as shown in Fig. 4(d).
In summary, we found the intrinsic refractive index pro-

file for the Eaton lens and the Luneburg lens, which is from
the Morse potential. Such a conformal lens has an asym-
metric self-focusing effect due to its asymmetric refractive
index about the y axis. Thus it differs from the symmetric
Mikaelian lens. We also proposed a generalized Eaton/
Luneburg lens and discussed their imaging properties.
All the lenses will be very useful in future conformal
cloaking designs and other imaging functionalities[5,7,14].
In addition, if the lens becomes finite, it would be possible
to design an omnidirectional concave lens, just like the
Luneburg lens that is an omnidirectional convex lens.
Finally, it would also be very promising to find more of
this kind of intrinsic potentials and design the related con-
formal lenses[12].

This work was supported by the National Natural
Science Foundation of China (No. 11874311).
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Fig. 4. (a) The 6–10 potential (red) and the 6–12 potential (green). (b) The refractive index profile of generalized Eaton/Luneburg lens
with a ¼ 4 (red) and the related lens from the 6–12 potential (green). (c) Ray trajectories from a point of (1, 0) on the generalized lens.
(d) Ray trajectories from a point of (1, 0) on the related lens from the 6–12 potential.
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