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To fully describe the structure information of the point cloud when the LIDAR-object distance is long, a joint
global and local feature (JGLF) descriptor is constructed. Compared with five typical descriptors, the object
recognition rate of JGLF is higher when the LIDAR-object distances change. Under the situation that airborne
LIDAR is getting close to the object, the particle filtering (PF) algorithm is used as the tracking frame. Particle
weight is updated by comparing the difference between JGLFs to track the object. It is verified that the proposed
algorithm performs 13.95% more accurately and stably than the basic PF algorithm.
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Object tracking technology is widely used both in civil and
military fields, including unmanned driving[1], intelligent
robots[2,3], ballistic missile tracking[4], and so on[5]. Particle
filtering (PF)[6] is a filtering method based on the Monte
Carlo method and recursive Bayesian estimation. It is not
restricted by system conditions and can effectively esti-
mate parameters and filter states under nonlinear and
non-Gaussian conditions. Therefore, PF has been widely
used in practical moving object tracking systems[6–8].
The data obtained by LIDAR[9] has high accuracy

and is not easily affected by illumination changes[10]. In
addition to the application of PF to object tracking in
two-dimensional (2D) space, the application in three-
dimensional (3D) space is also very rich. However, on the
one hand, many researchers only take 3D information ob-
tained by LIDAR as a supplementary means of 2D image
information in the research process. Seldom have research-
ers been able to fully explore the potential structure infor-
mation of 3D data. Choi and Christensen[11] used
photometric (color) and geometric (3D points and surface
normals) features to determine the likelihood of each par-
ticle. Held et al.[12] comprehensively used the descriptor of
3D shape, color, and motion to fully describe the object. In
the other hand, Zhou[13] directly used the original point
cloud information after segmentation for robots to grab
dynamic objects successfully. However, for an object with
higher speed, as the LIDAR-object distance and the angle
of the LIDAR platform change, the original data of point
cloud will change accordingly. Such changes have
influences on the direct use of the original point cloud in-
formation, which will decrease the stability of the object
description and tracking process.

In addition, the above studies were all completed in
a close LIDAR-object distance, which means that the
amount of point cloud data used was relatively abundant.
As the LIDAR-object distance becomes longer, the
amount becomes smaller, which increases the difficulty
in describing the object. Seldom are studies under the
above situation. In 2D space, joint color features are used
to fully conduct the description when the camera-object
distance is long. Ning et al.[14] built the joint color material
to enhance the object description. Li et al.[15] also proposed
the joint color space descriptor to enhance the robustness
of postulate estimation of a point cloud scene in the PF
framework.

In this Letter, LIDAR is assumed to be in an airborne
platform for object tracking from an initial distance of
3 km from the scene. There is no open access to the data
obtained under the situation used for tracking; thus, the
data for experiment in this Letter was undocumented be-
fore. The LIDAR-object distance continuously changes
during the movement of the platform. The number of laser
beams of the LIDAR is 64. The repetition frequency and
frame frequency of the LIDAR is 10 kHz and 20 Hz,
respectively. The structure of the proposed method is
shown in Fig. 1. Firstly, an object is chosen. To fully de-
scribe the object, an n × 341-dimensional joint global and
local feature (JGLF) descriptor is proposed. With the
framework of PF, an object tracking method is pro-
posed. Comparing the Bhattacharyya distances[16] be-
tween the JGLF of initial particles and the chosen object,
particle weights are calculated, and the particle resample
is done. Upon getting the new particles, the object will
be tracked.
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Local or global feature descriptors of the 3D LIDAR
point cloud cannot perform well when the data is little.
In order to make the most of 3D structure information,
the JGLF descriptor is proposed. When the platform is
far away from the object, and the imaging resolution re-
mains the same, the JGLF descriptor performs better. The
process of calculating the JGLF descriptor is as follows.
The relationship between one point and other points

in its k neighborhood is calculated one by one among
the 3D dataset P. For the point Pq of point cloud P, a
1 × 33-dimensional eigenvector is obtained after the calcu-
lation of fast point feature histogram (FPFH) (Pq)

[17].
Then, the points that have been used for calculating
the local features are successively included in the set
Qq ðq ¼ 1; 2;…; nÞ. For each data set Qq , it is considered
as a whole to extract global features and calculate the
viewpoint feature histogram (VFH) (Qq)[18] with a 1 ×
308 eigenvector.
The sum value is first calculated to obtain the sum of all

the feature eigenvectors in FPFH (Pq) and VFH (Qq):

sum ¼
X

FPFHðPqÞ þ
X

VFHðQqÞ: (1)

The construction matrix calculation of the JGLF
descriptor is

JGLFðPqÞ ¼ FPFHðPqÞ× TA þVFHðQqÞ× TB: (2)

TA and TB can be described by
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PF[7,19–21] uses particles with weights to approximate the
state distribution of the object at time k. One possible

state of the object is represented by the equations of sta-
tion and measurement:

xk ¼ f kðxk−1; vk−1Þ;
yk ¼ hkðxk ; nkÞ: (5)

The PF algorithm consists of six steps: particle initial-
ization, state prediction, sequential importance sampling,
weight calculation, weight normalization, and particle re-
sample, as is shown in Fig. 2. In the first particle initial-
ization step, the total number of the particle is set as n.
The object to be tracked is selected, and its JGLF descrip-
tor is extracted using the method shown in Fig. 1. State
estimation is made according to Xk ¼ X 0

k−1 þ vk−1, where
vk−1 stands for the random Gaussian noise. It is assumed
that the importance distribution qðkÞ at moment k is only
related to the state value xðk − 1Þ at moment k and the
measured value yðkÞ at moment k:

qðxk jx0∶k−1; y1∶kÞ ¼ qðxk jxk−1; ykÞ; (6)

wðiÞ
k ∝ wðiÞ

k−1 ·
pðyk jxðiÞk Þ· pðxðiÞk jxðiÞk−1Þ

qðxðiÞk jxðiÞk−1; ykÞ
: (7)

The Bhattacharyya distance of JGLF between the par-
ticle swarm and the object is introduced to measure the
particle weight in the proposed algorithm. The larger
the weight is, the higher the similarity between the par-
ticles and the object is. In the PF algorithm, the weight
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Fig. 1. Proposed object tracking method of point cloud based on JGLF.

Fig. 2. Flow chart of the proposed object tracking method.
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represents the importance of each particle. The weight
of each particle is characterized by the Bhattacharyya
distance. Assume that there are two n ×m-dimensional
vectors hðn;mÞ and gðn;mÞ:

bkðh; gÞ ¼
Xn
i¼1

Xm
j¼1

�������������������������������
hði; jÞ× gði; jÞ

p
: (8)

bk is called the Bhattacharyya coefficient, and its value
range is [0,1]. The Bhattacharyya distance is calculated as

dðkÞ ¼
�������������������������
1− bkðh; gÞ

p
: (9)

If the calculated dðkÞ value is smaller, and the two histo-
grams are more similar, then the similarity between the
two point clouds is higher.
Thus, the particle weight should be increased. There-

fore, the weight is calculated as

wðiÞ
k ¼ 1

½1− dðkÞ2�2 : (10)

Then, the weights of each particle are normalized as

wðiÞ
k ¼ wðiÞ

k

�XN
i¼1

wðiÞ
k : (11)

N eff is the effective particle number, and NT is the
threshold of the particle number; and if N eff < NT , the
following calculation is performed:

N eff ¼
1PNs

i¼1 ðwðiÞ
k Þ2

: (12)

A group of particles are generated again in the update
area. First, according to the following formula, the cumu-
lative probability is calculated and normalized:

cð0Þk ¼ 0;…; cðiÞk ¼ cði−1Þ
k þ wðiÞ

k ;

cðiÞk ¼ cðiÞk

�XN
i¼1

cðiÞk : (13)

Then, a set of random numbers that obey uniform dis-
tribution u ∼ Uð0; 1Þ is generated. umin, which is the

smallest and satisfies cðiÞk ≥ umin, is found. The particle

state value is set as xðiÞk−1 ¼ xðuminÞ
k−1 . After completing the

above steps, the average value of the object state can
be expressed as

EðxkÞ ¼
XNs

i¼1

wðiÞ
k xðiÞk : (14)

The end of object tracking is related to the length of the
data sequence. In order to verify the performance of the
proposed algorithm, experiments are implemented with
Visual Studio 2017 (VS2017) and the Point Cloud Library
(PCL)[22] on a computer with a main frequency of 3.5 GHz

and a memory of 8 G. The experiments include testing the
object recognition ability of the JGLF descriptor and the
proposed tracking algorithm. Besides, since there is no
open access for data obtained from the aircraft platform
to track the object, data used in this Letter are simulated
by the software Blender[23]. To obtain data, one can infer to
the operation introduction of the software.

In order to evaluate the effect of the proposed algo-
rithm, the intersection ratio R of a single frame and the
tracking accuracy and running time are calculated to, re-
spectively, evaluate the accuracy, stability, and real-time
performance of the algorithm. The intersection ratio of a
single frame characterizes the ratio of the coincidence part
between the particle bounding box and the actual object
point cloud and the number Ng of the actual object point
cloud in a single frame. The calculation equation[24] is

R ¼
P

ðxi ;yi ;zi Þ∈A ∩ G pi
Ng

× 100%: (15)

ðxi ; yi ; ziÞ represents the spatial position of the point Pi ,
which is the overlapping space of the calculated particle
set A and the corresponding true dataset G. The larger
the ratio is, the better the tracking in a single frame per-
forms. The threshold of R is set to 50%. When the calcu-
lated ratio of a frame is larger than 50%, then the frame is
considered as being successfully tracked.

The tracking accuracy S in the overall tracking process
is the ratio of the number of frames satisfying the thresh-
old condition to the total number of frames. The average
running time is calculated to evaluate the real-time perfor-
mance of the entire process. In different simulation scenar-
ios, the feature template libraries are trained in advance to
compare the object recognition capabilities of the JGLF
descriptor, VFH[18], clustered VFH (CVFH)[17], global
radius-based surface descriptor (GRSD)[25], ensemble of
shape functions (ESF)[26], and FPFH[27] descriptor by fea-
ture matching. The average object recognition rate is used
as the evaluation standard, and the result is shown
in Fig. 3.
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Fig. 3. Comparison of the object recognition rate at different dis-
tances between LIDAR and the object.
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From Fig. 3, as the LIDAR-object distance becomes
longer, the object recognition capability of each descriptor
decreases. The ESF descriptor performs best, then the
JGLF descriptor. Only observing FPFH and VFH, when
the LIDAR-object distance is from 0.5 km to 1.5 km, the
average object recognition rate of FPFH is higher than
that of VFH. While the LIDAR-object distance exceeds
2 km, VFH performs better, which proves that the ability
of single local or global features to describe the continuous
change of the LIDAR-object distance is still insufficient.
CVFH performs more segmentation and clustering in
advance in the calculation process, so its performance is
relatively better, but this descriptor itself has strong insta-
bility, which can explain the increase in the range of
2.25 to 2.5 km.
From Table 1, it can be seen that the average object

recognition rate of JGLF is 15.5% lower than that of
ESF, but it is still the second accurate descriptor, and
it performs 33 ms faster than ESF. Besides, JGLF is more
stable than ESF.
The tracking result of the proposed method is shown

in Fig. 4.
In Fig. 4, each tracking result is drawn in a bounding

box. As the object moves and the LIDAR-object distance
becomes shorter, the tracking bounding box can track the
object well in order to more clearly observe the difference
between the particles generated by the proposed algo-
rithm and the basic PF algorithm. In Fig. 4(f), black par-
ticles represent actual point cloud data, blue particles
represent the results obtained by the basic PF algorithm,
and red particles represent the results obtained by the PF
tracking algorithm based on the JGLF proposed in this
Letter. The whole spatial distribution of red particles is
closer to the actual object point cloud than that of the blue
ones.
The red line in Fig. 5 represents the threshold of

tracking accuracy, and it is set as 50%. The blue line
represents the intersection ratio in each frame using the
proposed algorithm, and the green line represents the
intersection ratio in each frame using the basic PF

algorithm. In the beginning, the LIDAR-object distance
is long, so the result is relatively poor because of the small
amount of point cloud data. As LIDAR and the object
move closer, the performance becomes better. However,
results of the basic one still show that in some frames it
works badly, which is mainly caused by the lack in describ-
ing the difference between the object and particles. During
the whole process, the tracking accuracy of the basic PF
algorithm is 84.87%, while the tracking accuracy of the
proposed PF algorithm in this Letter is 98.82% with a
13.95% improvement. The 13.95% increase proves that us-
ing a JGLF can make better use of the information of the
point cloud.

In Table 2, the tracking results of five algorithms are
shown. The five algorithms are the basic PF algorithm,
PF algorithms based on FPFH, VFH, CVFH, and JGLF in
this Letter. It can be seen from Table 2 that the PF algo-
rithms based on FPFH, VFH, CVFH, and JGLF all have
better performance in tracking accuracy and stability than
the basic one. As the proposed algorithm combined both
global and local features, it achieved the highest tracking
accuracy and the average intersection ratio of a single
frame. Compared with three other algorithms in tracking
accuracy, the increase is 13.95%, 9.78%, 8.06%, and
7.57%, respectively. For the mean value of R of each
single frame, the increase is 15.2%, 7.34%, 5.8%, and
7.68%, respectively. The proposed algorithm is second
to the one based on CVFH in the stability of each single
frame. Considering the increase of calculation complexity,
the running time of the proposed algorithm is only in-
creased by 0.52 ms. Since the LIDAR obtains data
with the interval of 50 ms, the running time of the

Table 1. Object Recognition Ability Comparison of
Six Descriptors

Object Recognition Rate (%)
Average
Running
Time (ms)Mean

Standard
Deviation

FPFH 62.37 13.17 5

VFH 64.34 11.25 3.6

CVFH 68.91 7.79 4.5

GRSD 39.85 16.28 31

ESF 87.59 16.71 39

JGLF 72.09 10.81 6

Fig. 4. Results of the PF point cloud tracking algorithm based
on JGLF in frame n: (a) n ¼ 1, (b) n ¼ 61, (c) n ¼ 121,
(d) n ¼ 181, and (e) n ¼ 241. (f) Comparison between particles
in frame 186.
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proposed algorithm is 12.96 ms, accounting for only
about 26% of the time interval of data acquisition, which
proves that the proposed one has a good real-time
performance.
In summary, when it comes to object tracking in a long

distance, the lack of object information can be a difficult
problem to tackle. With the development of LIDAR, the
structure information of the 3D point cloud can meet
the above needs. Under the situation with only a little
3D LIDAR point cloud data because the LIDAR plat-
form is far from the object, the JGLF descriptor is pro-
posed. Compared with current feature descriptors of the
3D LIDAR point cloud, the proposed descriptor performs
better in the accuracy, stability, and real-time perfor-
mance of object recognition. Using PF for the frame, an
object tracking algorithm is proposed. The comparison
experiments prove a better performance of the proposed
algorithm, as it increases the tracking accuracy to 98.82%.
At the same time, the results show that when object track-
ing has to be operated in a long distance, using the 3D
LIDAR point cloud can be helpful to improve the accuracy
and stability of tracking results.
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