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Quantum walks, a counterpart of classical random walks, have many applications due to their neoteric features.
Since they were first proposed, quantumwalks have been explored in many fields theoretically and have also been
demonstrated experimentally in various physical systems. In this paper, we review the experimental realizations
of discrete-time quantum walks in photonic systems with different physical structures, such as bulk optics and
time-multiplexed framework. Then, some typical applications using quantum walks are introduced. Finally, the
advantages and disadvantages of these physical systems are discussed.
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1. INTRODUCTION

Contributing to the coherent nature, quantum walks be-
have in a different way from their classical counterparts.
Quantum walks have a wide range of applications when
first noted by Aharonov et al.[1]. Their fast diffusive behav-
ior can be applied to quantum search algorithms[2]. Inter-
estingly, quantum walks are basics for many fields, such as
simulating quantum circuits[3], describing quantum lattice
gas[4], exploring topological phenomena[5–7], and simulating
the energy transport in photosynthesis[8,9]. According to
whether the quantum walks are continuous or not, quan-
tum walks can be classified to continuous quantum walks
and discrete-time quantum walks (DTQWs). Experimen-
tal investigations of quantum walks have been demon-
strated in trapped atoms[10,11], trapped ions[12,13], nuclear
magnetic resonance (NMR)[14], and photic systems.
Particularly, various elements can be used to control
photons and implement quantum walks, such as bulk op-
tics[6,15], waveguide structures[16–22], and time-multiplexed
framework[23–25].
There are many means of classifying quantum walks,

such as continuous quantum walks and DTQWs, accord-
ing to the continuity of time, and one-dimensional (1D)
and two-dimensional (2D) quantum walks according to
the dimensionality of the walker that can arrive. Besides,
we can also distinguish quantum walks on the basis of
degrees of freedom, such as polarization, spin angular
momentum (SAM), orbital angular momentum (OAM),
and the path. In this review, we mainly discussed the pho-
tonic experimental realization of DTQWs in bulk optics
and the time-multiplexed framework. We firstly overview
the standard DTQWs theoretically in Section 2. Then,
in the light of the experimental system structure, we
introduce the realizations of quantum walks with bulk
optics in Section 3 and the time-multiplexed framework
in Section 4. Finally, we concluded and compared the
experimental realizations of quantum walks in different
photonic systems in Section 5.

2. DISCRETE-TIME QUANTUM WALKS

First, let us briefly review 1D DTQWs on a line. Suppose
there is a particle, whose bases are denoted by j↑i and j↓i.
Then, a flipping operation is applied to the coin Hilbert
space (in this Letter, we take the Hadamard operation
as an example), followed by a shift operation, which shifts
the particle’s position to the right if the coin state is j↑i
and to the left if the coin state is j↓i. These two operations
can be written as

Û ¼ Ŝ Ĉ ; (1)

where Ŝ ¼ P
x j↑ih↑j ⊗ jx þ 1ihxj þ j↓ih↓j ⊗ jx − 1ihxj

(x ¼ …;−2;−1; 0; 1; 2;…; x represents the position) and

Ĉ ¼ Ĥ ⊗ Î (H is a Hadamard operator: 1��
2

p
�
1 1
1 −1

�
)

denote the shift operation and the coin flipping operation,
respectively.

By iterating the above operation for t steps, the state of
the system evolves to

jΨti ¼ Û t jΨini: (2)

With an initial state jΨini ¼ j↓i ⊗ j0i, three steps of this
process are expressed as the following example:

jΨini→Û
1���
2

p ðj↑i ⊗ j1i− j↓i ⊗ j− 1iÞ

→
Û 1
2
½ðj↑i ⊗ j2i− j↑ij↓iÞ ⊗ j0i þ j↓i ⊗ j− 2i�

→
Û 1

2
���
2

p ðj↑i ⊗ j3i þ j↓i ⊗ j1i þ j↑i ⊗ j− 1i

− 2j↓i ⊗ j− 1i− j↓i ⊗ j− 3iÞ: (3)

3. DISCRETE-TIME QUANTUM WALKS
WITH BULK OPTICS

The whole system of quantum walks can be separated into
coin space and walker space, as shown above. This means

COL 18(5), 052701(2020) CHINESE OPTICS LETTERS May 2020

1671-7694/2020/052701(14) 052701-1 © 2020 Chinese Optics Letters

mailto:gnep.eux@gmail.com
mailto:gnep.eux@gmail.com
mailto:gnep.eux@gmail.com
http://dx.doi.org/10.3788/COL202018.052701
http://dx.doi.org/10.3788/COL202018.052701


that at least two degrees of freedom are needed to act as
the coin and walker, respectively. There are many degrees
of freedom, such as polarization, SAM, OAM, and path,
that can be easily controlled to realize quantum walks.
In this section, under the consideration of freedom, we
organize the implementation of DTQWs with OAM
firstly. Moreover, this does not mean that quantum walks
can be realized only with OAM, as we review below; other
degrees of freedom that encode the coin state are also nec-
essary. Then, there are a great many of experiments that
use the degrees of freedom of path and polarization to en-
code walker position and coin states; we also summarize
these experiments in this section.

A. Realization of Quantum Walks with OAM
As early as 1992, Allen et al.[26] pointed out that photons
in Laguerre-Gaussian (LG) mode light beams carry OAM
with discrete values lℏ, where l is the helicity light phase
fronts. Beam carrying OAM has unique phase and intensity
profiles, which make it have great potentials in astronomic
observation[27], micro-manipulations[28,29], stimulated emis-
sion depletion (STED)[30], super-resolution imaging[31],
and so on. Since the quantum properties of OAM were first
demonstrated by Mair et al.[32] in 2001, more and more at-
tention has been paid to exploring OAM of single photon
for encoding high-dimensional quantum information. A
large amount of experiments have been reported[33–37].
The above mentioned features provide a particularly

suitable platform for implementing quantum walks. In
2006, Zou et al.[38] first proposed an experimental scheme
for implementing one-dimensional two-state quantum
walks by using OAM of a single photon.
The experimental setup of one step of the one-

dimensional two-state quantumwalks is depicted byFig. 1,
where only a symmetric beam splitter (BS) and two com-
puter generated holograms are used. The BS is used to im-
plement the Hadamard operation of the coin states,

through mixing the two optical modes (corresponding to
the two paths of the pulse). The computer generated holo-
grams are used to convert laser guided modes, which then
change the OAM state from l to l � 1. Then, one step is
realized.

In 2007, Zhang et al.[39] experimentally realized three
steps of the quantum walks that depended on this scheme
with some improvements. As we know, reflection by the
mirror will change the helicity of light phase fronts, there-
fore changing the OAM of the photons from l to −l. A
specially devised BS0 was used in this scheme. A BS0

(as shown in Fig. 2) consists of a normal symmetric BS
and two mirrors. One of the mirrors is put in the upper
input route and the other in the down output route of the
BS. The BS0 performs a Hadamard operation on the spa-
tial path (corresponding to the state of the particle) of the
photon, and meanwhile the OAM remains unchanged,
contrary to the situation when only a normal BS is used.

The two-level states are encoded by the two spatial paths
of the photon pulse, and the position of the walker is rep-
resented by the OAM state. As aforementioned, the BS0 is
used to flip the coin, and the computer generated hologram
is used to demonstrate a shift operation by converting
the OAM of the photon. The experimental setup is shown
in Fig. 3. Three steps will be described in detail below.

Initial state: The state of the system is initialized and
then incident to the setup, which is expressed as

(a)

(b)

Fig. 1. (a) Experimental setup of one step of a 1D quantumwalk.
(b) Schematic of N steps of a quantum walk, where module G
denotes the setup shown in (a)[38].

Fig. 2. Schematic of the specially devised OAM beam splitter
(BS0), consisting of a BS (symmetric BS) and two mirrors[39].

Fig. 3. Experimental scheme of a 1D two-state quantum walk
with the specially devised OAM BS0. A normal symmetric
BS1 is still used in this scheme, while BS02 and BS03 are both
OAM BS0s. Single-mode fibers (SMFs), computer generated
holograms with proper�l (Holol), pinholes (P1 − P6), and power
meters (Du and Dd) are used for the measurement[39].
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j↓i ⊗ j0i; (4)

representing a photon of LG0 mode in the down route.
Pinholes are inserted to filter for the first order of the dif-
fraction of holograms.
Step 1: The first step of the quantum walks is imple-

mented by BS1, Holoþ1 in the upper path, and Holo−1

in the down path. BS1 performs a Hadamard operation
on the coin state (path state), followed by Holoþ1 and
Holo−1 converting the OAM state of the photon from
its initial state j0i to j þ 1i and j− 1i, respectively. Before
entering BS02, the state of the system evolves to

1���
2

p ðj↑i ⊗ j1i− j↓i ⊗ j− 1iÞ: (5)

Step 2: The upper and lower paths join in BS02. No in-
terference occurs here since the respective OAM states of
the two paths differ. BS02 performs a Hadamard operation
on the path states. Two Holos here act similarly as in the
first step. Thus, before entering BS03, the state of the sys-
tem evolves to

1
2
½ðj↑i ⊗ j2i− j↑ij↓iÞ ⊗ j0i þ j↓i ⊗ j− 2i�: (6)

Step 3: In the third step, because the same OAM state
(j0i) exists in both input states of BS03, a Mach–Zehnder
interference occurs here. Similar to former steps, Holoþ1

and Holo−1 are placed in the upper and lower paths, re-
spectively (Holos are not represented in the figure, which
will be explained in the measurement step). The state of
the system evolves to

1

2
���
2

p ðj↑i ⊗ j3i þ j↓i ⊗ j1i þ j↑i ⊗ j− 1i

− 2j↓i ⊗ j− 1i− j↓i ⊗ j− 3iÞ: (7)

Measurement: Single-mode fibers, holograms with
proper �l, and a power meter are used to collect photons
and measure the energy of the output photons, from which
the probability of photons in different positions can be cal-
culated. It is known that only photons with OAM state j0i
can propagate in a single-mode fiber (SMF). So, a Holo
with proper l is placed before the coupler of the fiber to
shift the OAM state to j0i. For example, to measure a
state j↑i ⊗ jli, Holo−l , which transforms the state that will
be changed to j↑i ⊗ j0i, is placed behind Holoþ1 of BS03.
In the actual experiment, these two holograms can be
combined to one for the sake of brevity.
Light beams have helical and polarization modes, cor-

responding to OAM and SAM for photons, respectively.
When light transmits through an inhomogeneous and
anisotropic medium, its OAM and SAM are not conserved
separately. In particular, with a recently introduced pho-
tonic device called the “q-plate”[40], the overall angular mo-
mentum can only be exchanged between OAM and SAM.

The q-plate is essentially a retardation wave-plate made
by a liquid-crystal birefringent medium with an inhomo-
geneous optical axis. Its special structure produces a topo-
logical charge q, so as to raise or lower the OAM of the
photon crossing it according to its SAM. Using j↑;mi
(j↓;mi) denoting an initial state of a photon carrying
mℏ OAM and ℏ (−ℏ) SAM, the action induced by a
q-plate with q ¼ 0.5 can be represented as follows:

j↑;mi →
q−platej↓;m þ 1i; j↓;mi →

q−platej↑;m − 1i: (8)

As shown above, a q-plate performs only as a medium
for the conversion between OAM and SAM, with the over-
all change of angular momentum nil. A q-plate with q ¼
0.5 acts a “�1” on the OAM value m depending on the
polarization. This spin-orbital system is a suitable carrier
for implementing quantum walks (one conceptual scheme
is illustrated in Fig. 4). In 2010, Zhang et al.[42] proposed
a scheme of 1D quantum walks by using photon SAM as
the quantum coin and OAM space as the walk space. The
experimental scheme is illustrated in Fig. 5.

Fig. 4. Conceptual schematic of quantum walks with the spin-
orbital system[41].

Fig. 5. Schematic of the experimental setup to implement 1D
quantum walks by using photon SAM as the quantum coin
and OAM space as the walk space. A set of three wave-plates
[two quarter-wave-plates (QWPs) and one half-wave-plate
(HWP)] are used for initial state preparation. The gray box im-
plements one step of quantum walks, consisting of three wave-
plates, one QWP and two HWPs, and one q-plate (QP). The
OAM analysis module is made up of a computer generated holo-
gram, an SMF, and a single-photon counting module (SPCM)[42].
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The state of the photon can be expressed as

jH ; 0i ¼
����Rþ L���

2
p ; 0

�
; (9)

where H represents horizontal polarization, and R and L
represent the right circle polarization and left circle polari-
zation, respectively. A set of wave-plates are used for the
preparation of the initial state, followed by a gray box
(shown in Fig. 5) that is used to flip the coin and then
transform the position of the walker accordingly. The
quarter-wave-plate (QWP) at 0° and half-wave-plate
(HWP) at 22.5° of the box perform a Hadamard transmis-
sion (that is, a flip of the coin) to the coin state. Then, the
q-plate in the box steps the photon to right or left by act-
ing �1 to the OAM value m. The HWP at 0° restores the
spin. Thus, one step of quantum walks was realized.
Given an initial state jΨini ¼ jR; 0i, the first three steps

evolve as

jΨini→Û
1���
2

p ðj↑i ⊗ j1i− j↓i ⊗ j− 1iÞ

→
Û 1
2
½ðj↑i ⊗ j2i− j↑ij↓iÞ ⊗ j0i þ j↓i ⊗ j− 2i�

→
Û 1

2
���
2

p ðj↑i ⊗ j3i þ j↓i ⊗ j1i þ j↑i ⊗ j− 1i

− 2j↓i ⊗ j− 1i− j↓i ⊗ j− 3iÞ; (10)

which is exactly the same as Eq. (3).
The probabilities of photons being in different positions

can be measured with a similar method as in the aforemen-
tioned theme.
Compared with the scheme[38,39] introduced previously,

this scheme is more efficient and stable due to: first, a
higher transmitted efficiency of 97% of q-plates compared
to 37% of computer-generated holograms; second, there is
no need for a phase-sensitive Mach–Zehnder interferom-
eter. Based on these remarkable features, the steps of
the quantum walks were estimated to reach 203 in the
setup of Zhao et al.[42].
In 2015, Cardano et al.[41] experimentally implemented

the scheme proposed in 2010[42] by Zhang et al., both for a
single photon and two simultaneous photons. The single-
photon quantum walks were carried out with a set of
apparatus similar to the classical one (using classical co-
herent light). It behaves equivalently to the classical one,
resulting in the probability distributions being identical
to the intensity distributions when using classical light.
However, the setup introduced in this work is also sui-
table for investigation of multi-particle quantum inter-
ferences, which cannot be demonstrated classically. A
two-photon quantum walk was designed to employ this
feature. The experimental demonstration is briefly de-
scribed below.
Photon pairs generated via type-II spontaneous para-

metric down conversion (SPDC) using a β-barium borate
(BBO1) crystal are sent through a wave-plate set to

initialize its state. Then, the two photons go through three
identical subsequent quantum walk steps (similar to the
part introduced in the previous scheme using classical
light), followed by a 50:50 BS placed to randomly split
them. The OAM state is then analyzed by diffraction
on a spatial light modulator (SLM), followed by coupling
into an SMF. Two interferential filters (IFs) are posi-
tioned before the SMFs to filter the photon band. The pro-
jection state corresponding to the OAM value is then fixed
by the hologram pattern displayed on the SLM. Figure 6
shows the layout of the setup for the demonstration of a
two-particle quantum walk.

A remarkable work reported more recently by Wang
et al.[7] in 2018 is introduced briefly below, as a typical
example of the application of quantum walks demon-
strated with OAM. In this work, the authors proposed
and demonstrated the first, to the best of our knowledge,
experiment for observation of topological phases in 2D
quantum walks. In their experiment, the two degrees
of freedom of the 2D quantum walks are encoded by
spatial positions and OAM states of light. Based on this
platform, the authors reported an observation of 2D
topological bound states with vanishing Chern numbers.
The experimental setup is illustrated in Fig. 7, consist-
ing of three modules. Firstly, the initial state is prepared
in the first module, as shown in Fig. 7(a). Then, many
steps of 2D quantum walks are realized in the next mod-
ule, as shown in Fig. 7(b). At the end of the setup, the
results are detected by the last module, as shown in
Fig. 7(c).

Quantum walks provide a powerful platform for simu-
lating quantum phenomena. In particular, it is a suitable
tool for observing and understanding topological phenom-
ena, about which a lot of experimental observations have

Fig. 6. Detailed sketch of the setup for demonstration of a two-
particle quantum walk[41].
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been reported. More examples on this can be found later in
the Letter.

B. Realization of Quantum Walks with Polarization and Path
In this section, we will introduce several typical schemes
using bulk optics with the freedom of polarization and
path. As summarized in Ref. [43], these proposals with lin-
ear optical elements show that an inherent “quantum”
system is not necessarily needed for implementing quan-
tum walks, and the characteristic distribution of quantum
walks can be effectively demonstrated using the interfer-
ence of the classical field.
In 2002, Zhao et al.[44] proposed one of the first schemes

to implement 1D quantum walks with high feasibility
using only linear optical elements. It also shows that a
quantum walk tends to be classical when decohering
the quantum states.
In this proposal[44], the network for quantum walks is

constructed with polarization BSs (PBSs) and HWPs.
The quantum coin states are represented by the horizontal
polarization state jH i and vertical polarization state jV i
of photons. The PBS splits the input light into the two
output ports denoted by “left” and “right” for jV i and
jH i, respectively. However, when a superposition state
passes through the PBS from the “left” side, it goes wrong,
since the jHi component is transmitted, and the jV i com-
ponent is reflected. Thus, a PBS consisting of a PBS and
HWP (R90) is introduced to direct the jV i and jHi com-
ponents correctly [see Fig. 8(b) for details]. Then, the
movement of a photon can be defined depending on its
polarization.
Figure 9 illustrates the optical setup constructed for im-

plementing the quantum walks, where a network similar
to Galton’s quincunx[45] emerges. Each line in the figure is
labeled by an integer j. Every single step results in the line
changing from j to j þ 1. The optical elements along the
jth line are labeled by k ¼ −j;−j þ 2;…; j − 2; j, repre-
senting position states jki.
The triangle in Fig. 9 represents elements and an input

state, either jH i or jV i, while the circle represents
elements and two input states from the last line mixing
here into a superposition state, followed by R45 (HWP
at 22.5°) performing a Hadamard transformation:

jHi → 1���
2

p ðjH i þ jV iÞ; jV i → 1���
2

p ðjHi− jV iÞ: (11)

Then, PBSs and PBSs split the input state and pass
them to the ðj þ 1Þth line. State jHi is transited to the
“right” to the ðk þ 1Þth node of the ðj þ 1Þth line, while
state jV i goes to the “left” to the ðk − 1Þth node. By
iterating the above procedure, quantum walks with arbi-
trary steps can be implemented by simply adding PBSs
and PBSs.

A single-photon source is required in this scheme.
Mature techniques such as SPDC[46] and quantum dot[47–50]

can be chosen to demonstrate such a light source. By using
a set of wave-plates[51], an arbitrary initial state cos θjHi þ
eiψ sin θjV i can be prepared. The probability distribution
feature of the quantum walks can be obtained by probabi-
listic measurement by putting detectors on the output
path of the PBSs of the last line (represented by a square
in Fig. 9).

In 2005, Do et al.[52] experimentally realized a quantum
quincunx by using linear optical elements. The arrange-
ment depicted in Fig. 10 is similar to the original one

Fig. 9. Optical layout of the experimental setup for implement-
ing N-step quantum walks on a line[44].

Fig. 8. Schematic of using bulk optics as the basic
elements of 1D quantum walks. The PBS consists of a PBS
and HWPs (R90), where a PBS splits the input light into the
two output ports denoted by “left” and “right” for jV i and
jHi, respectively[44].

Fig. 7. Experimental setup of 2D quantum walks (see text for
more details)[7].
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proposed by Zhao et al.[44], but does not require the spe-
cially defined optical element PBS. Another significant
difference is a lower intensity He–Ne laser rather than a
genuine single-photon source being used.
In 2010, Broome et al.[15] experimentally demonstrated

quantum walks with single photons. This experimental
demonstration was also carried out based on the proposal
of Zhao et al.[44], and has one favorable feature that
the number of optical elements required in this scheme
scales linearly with the number of steps, contrasting to
scaling exponentially in the scheme of Do et al.[52], which
is achieved by utilizing a birefringent calcite beam
displacer (BD) instead of a PBS as the main element to
construct the interferometers. They also explored the
transition between quantum and classical walks by intro-
ducing decoherence[53–55].
As in the original proposal of Zhao et al.[44], the coin

states in this scheme are encoded in the polarization states
jH i and jV i of the photon, while the position states are
defined by the spatial modes jii (i ¼ 0;�1;�2;…) (see
Fig. 11). As mentioned above, BD instead of PBS (or
PBS) of previous proposals was employed to construct
the optical network. The optical axis of the BD is cut
so that vertically polarized light is directly transmitted,
and horizontal light undergoes a lateral displacement into
a neighboring mode. Then, the shift of the position (de-
noted by jii) to the left and right can be represented
by lateral displacement and direct transmission through
the BD, respectively, i.e.,

jH ; ii→BDjH ; i − 1i; jV ; ii→BDjV ; i − 1i: (12)

The probability distributions of one step of the quan-
tum walks can be obtained by detecting the photons using
an SMF and a single-photon detector at each output
position of the step (see Fig. 11).
Another favorable feature of this scheme is the real-

izability of introducing decoherence by adjusting the

relative angle between adjacent BDs, resulting in a tem-
poral lag Δt and a transversal mode mismatch Δx between
interfering wave-packets [Fig. 11(c)]. The authors pointed
that full decoherence appears when setting a relative angle
of 10.5° between the BDs. In this case, the probability dis-
tribution of a classical random walk is obtained, as shown
in Figs. 12(b) and 12(c).

More recently, Bian et al.[56] experimentally imple-
mented a quantum walk on a circle with single photons.
Clockwise-cycling and counterclockwise-cycling walks
were realized in their experiments. The “real” position
means the shift of the quantum walks was realized in
the space of their spatial modes, compared to those in
“abstract” spaces in other schemes[13,42,41,57–59]. Quantum
walks on cycles with four and three nodes were experimen-
tally realized. Setup for four nodes cycles as an example is
as shown in Fig. 13.

In 2018, Xue et al.[60] proposed a scheme to demonstrate
arbitrary 2D quantum walks also in a real position space
via bulk optical elements. Figure 14 shows the setup for
implementation of arbitrary coined 2D quantum walks.
Here is a brief introduction of the first step, which is real-
ized by four stages, as an example.

State preparation stage: Photons generated via type-I
SPDC are prepared in a coin state in a four-dimensional
(4D) Hilbert space by passing through a PBS, a BD, and
three HWPs. In this procedure, four possible states of the
coin for 2D quantum walks are represented by combining
two polarizations of a photon and two possible spatial
modes. By setting three HWPs at certain angles, arbitrary
coin states for 2D quantum walks can be initialized.

Coin flipping stage: A four-sided coin flipping operator
of the 2D quantum walks can be decomposed by the
“cosine-sine” decomposition[61]. In this way, a 4 × 4 matrix
of the flipping operator can be easily implemented with a
set of linear optical elements in the form of the coin flip-
ping stage, as shown in Fig. 14, consisting of four BDs and
some wave-plates.

Fig. 10. Scheme of implementing a quantum quincunx with
optical elements[52].

Fig. 11. Schematic of the experimental demonstration six steps
of the quantum walks with single photons. (a) Ci and Si indicate
six pairs of coin and shift operators, separately. (b) The first two
steps are illustrated in detail. (c) Adjusting the relative angle be-
tween adjacent BDs, resulting in a temporal lag Δt and a trans-
versal mode mismatch Δx between interfering wave-packets,
thereby introducing decoherence[15].
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Shift stage: The conditional shift operator can be real-
ized by only one BD, as shown in the shift stage of Fig. 14,
of which the axis is perpendicular to the preceding ones,
thus allowing the photons passing through it to be sepa-
rated longitudinally according to their polarizations[62].
Expansion stage: In the expansion stage, the dimension

of the Hilbert space of the coin will be expanded by BDs
and HWPs at 45°, in order to prepare enough spare modes
ahead of time for the next step. As is shown in Fig. 14, four
BDs are used for the expansion stage.
Thus, we need (up to) four BDs for the flipping stage,

one for the shift stage, and four for the expansion stage.

This means that the request for the amount of elements for
realizing 2D quantum walks increases linearly with the
number of the steps.

In 2019, Su et al.[63] experimentally demonstrated
DTQWs with the walker initialized in superposition states
and experimentally investigated the effects on the spread
speed of the quantum walks when initializing the walker’s
state in different superposition states. One of the innova-
tions in that paper is the encoding method, in which the
authors creatively encoded the polarization states of single
photons as the walker’s positions, while encoding two spa-
tial routes jUi and jDi of the single photons as the coin
states. The conditional shift operator can be implemented
by two HWPs at 0° and another two at Δθ∕2 and −Δθ∕2,
respectively, as shown in Fig. 15(a), while the coin oper-
ator can be implemented by a BS, as shown in Fig. 15(b).

The setup of the scheme is shown in Fig. 16, and the
steps of the quantum walks, with the walker initialized
in superposition states, are described specifically as
follows.

As mentioned above, the position states are encoded by
the polarizations of the photon, which then can be initial-
ized by the two HWPs inserted on the output paths of the
first PBS. The coin state of the walker is encoded by the

Fig. 12. Experimental results. Probability distributions of the (a) quantum walks and (b) classical walks when introducing
decoherence. (c) Normalized standard deviation of the probability distribution, where the lines indicate the theoretical values[15].

Fig. 13. Experimental setup for realization of quantum walks on
cycles with N nodes[56].

Fig. 14. Detailed schematic of the experimental setup for implementation of arbitrary coined 2D quantum walks (see text for
details)[60].
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path of the photon, which can be initialized by the first
PBS followed by two QWPs and one HWP inserted on
the input paths of the PBS. By passing through BS 2,
a shift operator of the coin is implemented. Then, the pho-
ton enters loop 2 counterclockwise, and HWP 2 imple-
ments the walking operator, i.e., the rotation of δθ (−δθ)
is applied to the polarization space of the photon. The first
step of the walk is implemented at this point. Then, the
photon re-enters BS 2, and a second coin toss is performed.
The photon has a probability to enter loop 1, similar to the
situation in loop 2. In loop 1, a rotation of δθ (−δθ) in the
polarization space is performed by HWP 1. The photon
then passes through BS 2 again and enters loop 2 to realize
the next step. In addition, the photon has a probability of
passing through BS 1 and being detected by the device in
the D1 (D2) part.

4. REALIZATION OF QUANTUM WALK BY
TIME-MULTIPLEXED FRAMEWORK

Besides the spatial mode for bulk optics, a novel freedom
of arrival time of photons can also be used to realize

DTQWs. The first experiment of a time-multiplexed de-
tector was reported by Ref. [64]. In this section, we re-
viewed time-multiplexed framework DTQWs. The most
prominent characteristic of this framework is the usage
of the freedom of time-bin encoding. Although the struc-
ture of most of these experiments are fiber-loop, Xu et al.[65]

realize DTQWs in free space. Besides, in consideration of
the number of loops in the experiment, 2D DTQWs are
easier to be realized than bulk optics.

As illustrated in Fig. 17, the signal was input to a 50:50
coupler. Then, these pulses become delayed under the dif-
ferent lengths of fibers. By iterating this setup, the pulse
input to this setup was firstly separated to several pulses.
Although this setup was used to implement the detection
with photon number resolution, this experiment can be
improved to realize quantum walks. As illustrated in
Fig. 18, the polarization of photons can be rotated by flip-
ping operators, which is realized by an HWP at the initial
position x. After passing through the first PBS, the verti-
cally polarized photon is reflected to a longer path with
position x − 1, while the horizontally polarized photon
is transmitted to a shorter one with position x þ 1. When
they arrived at the second PBS, the horizontally polarized
photon goes faster than vertically polarized one by

Fig. 15. (a) Encoding method. The walker’s positions are en-
coded with the polarization states of single photons. (b) Imple-
mentation of the conditional shift operator, where two HWPs at
0° and another two at Δθ∕2 and −Δθ∕2 are used[63].

Fig. 16. Experimental setup. The photon pairs are generated by
the BBO crystal through the SPDC technique, one of which is
detected by the single-photon detector (D0) as the trigger, while
the other one is initialized in the state initialization part and then
incident into the optical loops to demonstrate the quantum
walks, of which the arrival times can be detected by D1 and D2

[63].

Fig. 17. Schematic setup of the detector. 50:50, symmetric fiber
couplers[64].

Fig. 18. Schematic diagram of the principle of the time-
multiplexed framework. The HWP is used to implement the coin
flipping operator. The first PBS can separate photons by their
polarization to different paths, while the second PBS recombines
these photons from different paths to the same one. The red wave
indicates the evolution of the first step, and the yellow wave in-
dicates the second step. The arrows represent the direction of
polarization.
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Δt ¼ Δl∕c; (13)

where Δl is the path difference for different polarization,
and c is the velocity of light in the medium. This process is
the implementation of the shift operator. Then, these pho-
tons will return to the beginning through a loop circuit
and repeat this process.

A. Experimental Realization of Photons Walking on the Line
The first, to the best of our knowledge, experimental reali-
zation of a time-multiplexed quantum walk was reported
by Silberhorn et al.[23]. There, the five step quantum walk
was implemented with a fiber network loop. The experi-
mental scheme is shown in Fig. 19. A picosecond pulsed
laser was used to generate wave packets of photons under
the repetition rate of 1 MHz. The neutral filters can decay
the initial mean photon number to hniinitial ¼ 8ð2Þ. Then,
after photons passing through a 50% BS and being
coupled into the fiber network, the mean photon number
can reach the single-photon level. When coupled into the
fiber, the vertically polarized photon takes 5 ns longer
than the horizontally polarized photon. After being re-
combined at the second PBS, 50% of photons will be re-
flected out of the loop and detected, while the other 50%
will take part in the next step walk. For this process, the
single-photon level must be confirmed for the last step de-
tection because the dead time of the avalanche photo-
detector (APD) may be too short to recognize that the
photons come from the longer or shorter fibers.
In theory, the limitation of steps exists because the slow-

est photon of t − 1 steps and the fastest photon of t steps
must be distinguished. This limitation is related to the
length of the longer fiber l1, shorter fiber l2, and the free
space l. The rough relation under suitable repetition
frequency is

ðN − 1Þðl1 þ lÞ < Nðl2 þ lÞ; (14)

where N ∈ Z is the maximal steps for this setup. We can
calculate the maximal steps as nine; however, only
five steps were implemented in their experiment. The rea-
son is that not only is the length of fiber but also the
loss included in the detection limit walk steps. The effi-
ciency of this setup is only ηsetup ¼ 0.18ð1Þ. Therefore,
after five steps, the mean photon number decays to

hni5steps ≈ 7 × 10−4. For the sixth step, the average photon
number will be too small to be distinguished from noise.

In the above example, a 1D quantum walk of five steps
was realized. In 2011, further than this experiment,
Silberhorn et al.[24] realized a 28-step 1D quantum walk.
This is obviously a very important development. As Fig. 20
shows, besides the reasonable length of fibers in Eq. 14,
there are two factors that increased the steps. On one
hand, a 12% BS was used to replace the 50% one. This
replacement can allow more photons to return to the loop.
On the other hand, they only guarantee the single-photon
level at the last detected step, hni < 0.003, rather than at
the initial input state. This means that the classical laser
can also be used to implement this experiment and end up
with the same result. However, if we detect the classical
laser at the last step, the dead time of the detector must
be less than the time interval of the photons. Besides the
28 steps, the application of the electro-optic modulator
(EOM), which is another development in the experiment,
provides various possibilities to control the coin states. In
this setup, on the basis of fjHi¼ ð1; 0ÞT ; jV i¼ ð0; 1ÞTg,
the matrix of the EOM is

CEOMðxÞ ¼
�
eiϕH ðxÞ 0

0 eiϕV ðxÞ

�
; (15)

where ϕHðV ÞðxÞ represents a phase shift acting on jHðV Þi,
and the arrival time can be regarded as the position x.

B. Experimental Realization of 2D Quantum Walks
There exist various topological structures in multi-
dimensional quantum walks. That means multi-
dimensional quantum walks provide a platform to
simulate lattice structure in condensed matter. Here,
two examples are given to describe the 2D quantum walks
by the fiber loop time-multiplexed framework. The first
one is a 2D quantum walk simulation of two-particle dy-
namics reported by Silberhorn et al.[25]. The walker is de-
fined as jx1; x2; c1; c2i, where x1 and x2 indicate its position
in a 2D lattice, and c1 and c2 present its coin state. As
Fig. 21 shows, incident photons follow, depending on their
polarization, entering into four different paths, two for

Fig. 19. Experimental scheme of the time-multiplexed frame-
work[23].

Fig. 20. (a) Experimental setup. (b) Probability distribution of a
Hadamard walk after 28 steps[24].
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fibers and two for free space, to realize this 2D quantum
walk. This optical fiber network realizes a 12-step 2D
quantum walk and covers 169 positions in a 2D lattice.
This work also provides a method to extend to more than
two dimensions by adding loops in this network.
The other experimental realization of a delayed-choice

2D quantum walk was reported by Jeong et al.[66]. This is
the first, to the best of our knowledge, experiment that
realizes a 2D quantum walk with a single-photon source
in a time-multiplexed network. The experiment scheme
is shown in Fig. 22, and although an entangled Bell state
was prepared, only a single photon passes through the

quantum walk network, namely Bob’s side, while the
other photon is sent to Alice to implement delay choice.
The difference of this 2D quantum walk from walking
on the line above is that an extra freedom of the walk di-
rection exists. They map the arrival time of photons to a
2D lattice of the walker. As shown in Fig. 22, two alternate
directions, x and y, were introduced for alternate rotation
operators, coin 1 and coin 2, which were realized by two
HWPs. Firstly, a photon pair was generated via SPDC by
a periodically poled KTiOPO4 (PPKTP) crystal. It is
quite different from previous decayed single photons;
the photon sent to Bob was heralded in the measurement
with the detection of the photon sent to Alice. However,
this detection of coincidence count at two APDs has little
difference from the experiment of quantum walks by bulk
optics, which can be realized by continuous laser. In other
words, only a pulse laser can be applied to produce photon
pairs because the time interval of two photon pairs would
be too short to exceed the dead time of APDs. But for the
pulse laser, this time interval cannot be shorter than the
period. In this experiment, the repetition rate of the laser
is 1.25 MHz. The alternate directions x and y of the walker
were implemented by a fiber loop and a free space loop,
respectively. In the x step, the rotation is implemented
by an HWP labeled coin 1, and the shift operator is imple-
mented by a PBS, which can project the coin into two
fibers L1 and L2 based on their polarization. After being
recombined at the second PBS, the y-step walk starts
at the rotation of coin 2, just the same as the x step,
and the third PBS projects the coin into two paths of free
space, L3 and L4. Finally, these photons reflected by the
BS were detected, while the remaining photons returned
to the loop and walked to the next step.

In this experiment, the coin operator is the Hadamard
gate,

H ¼
�
1 1
1 −1

�� ���
2

p
; (16)

and the shift operators in the x and y directions are

Sx ¼
X
i;j∈Z

ji − 1; jiW hi; jj ⊗ j0iC h0j

þ ji þ 1; jiW hi; jj ⊗ j1iC h1j; (17)

and

Sy ¼
X
i;j∈Z

ji; j − 1iW hi; jj ⊗ j0iC h0j

þ ji; j þ 1iW hi; jj ⊗ j1iC h1j; (18)

where iðjÞ represents the lattice in the xðyÞ direction, and
C and W indicate the coin and walker Hilbert space,
respectively. Intuitively, if we want to implement a 2D
quantum walk, it is necessary for a 4D coin space. After
coin flipping, the walker will walk in four directions, left,
right, up, and down, according to their coin state. In these

Fig. 21. (a) Experimental setup of the 2D quantum walk with
one walker. (b) Diagram of a 2D quantum walk separated by
two different-direction 1D quantum walks[25].

Fig. 22. Initial state, produced by a type-II PPKTP crystal, is
prepared as a Bell state, and one of the photon pairs is sent to
Alice, while the other is sent to Bob. At Alice’s side, projection
measurement is implemented to choose the initial state of the
system, while Bob that realizes a 2D quantum walk is the same
as above. The initial state of Bob can be chosen rather than the
beginning of Bob, but not the projection measurement of Alice’s
side[66].

COL 18(5), 052701(2020) CHINESE OPTICS LETTERS May 2020

052701-10



programs, the walker can walk to any lattice on a 2D
plane. Take the example of the Grove walk, the coin
and shift operators are

H ¼

0
BB@
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

1
CCA
,

2; (19)

and

Sx ¼
X
i;j∈Z

ji − 1; j − 1iW hi; jj ⊗ j0iC h0j

þ ji − 1; j þ 1iW hi; jj ⊗ j1iC h1j
þ ji þ 1; j − 1iW hi; jj ⊗ j2iC h2j
þ ji þ 1; j þ 1iW hi; jj ⊗ j3iC h3j: (20)

The spatial distribution of the quantum walk described
above is same, which has been proved in Refs. [67,68]. This
means that split-step 2D walks can take the place of true
multi-dimensional walks with multi-dimensional coins.
For photons, it is too difficult to find an easily operated
degree of freedom to encode multi-dimensional coins.
Therefore, in this direct way, 2D quantum walks can be
realized to explore quantum essence. The scheme provides
a method to implement higher-dimensional quantum
walks by a single qubit coin. Besides, the delay choice of
this experiment shows that the polarization of the initial
state is not decided, and the coincidence measurement
with the ancilla chooses the valid initial state.

C. Observation of Topologically Protected Edge States in a
Photonic Two-Dimensional Quantum Walk
The topological protected edge state is fundamentally
important in topological matter due to its robustness to
various disturbances. The DTQWs provide a versatile
quantum simulation platform to simulate the evolution
of a time independent effective Hamiltonian. The motion
of the walker can describe a particle on a discrete lattice,
and the internal degree of freedom also can be simulated
by the coin state. There are many explorations of topologi-
cal phenomena of quantum walks theoretically and exper-
imentally[69,70]. Here, two examples of diverse experimental
principles are given to describe the application of quantum
walk in quantum simulation.
In the first example, Chen et al.[71] observed the topologi-

cally protected edge state in a 2D quantum walk. A split-
step quantum walk was introduced to describe the Floquet
system when the periodic boundary exists for the walker.
They use a spin-half-particle walking on a 2D lattice. The
same as the realization of Ref. [25], alternative walk direc-
tions x and y are implemented for alternative coin rota-
tions Rðθ1Þ and Rðθ2Þ, and the unitary operator of a
split-step quantum walk is

U ¼ TyRðθ2ÞTxRðθ1Þ; (21)

where RðθÞ ¼ e−iσyθ∕2. x and y present the direction of the
walker in a 2D lattice, and the shift operator in the x and y
directions is

Tx ¼
X
x

jx þ 1ihxj ⊗ j↑ih↑j þ jx − 1ihxj ⊗ j↓ih↓j;

Ty ¼
X
y

jy þ 1ihyj ⊗ j↑ih↑j þ jy − 1ihyj ⊗ j↓ih↓j: (22)

Then, the effective Hamiltonian can be written as

U ¼ e−iHðθ1θ2Þt∕ℏ: (23)

The experimental implementation of this 2D quantum
walk is shown in Fig. 23.

Although the main progress of this 2D quantum walk is
similar to Ref. [25], the neoteric technique is that the usage
of EOM can separate the space of x into two parts. For
x < 0, the angle of the EOM can be set as θ1;−, while, when
x ≥ 0, the angle of the EOM can be set as θ1;þ. This spatial
inhomogeneous quantum walk can investigate a nontrivial
topological effect unique to a 2D driven system. They real-
ized an inhomogeneous 2D quantum walk with 25 steps
firstly. Although 28 steps have been realized by Schreiber
et al. in Ref. [24], the walker covering a 2D 51 × 51 lattice
is indeed in progress. There exist two factors that contrib-
ute to the progress in walking more steps. The first is the
BS, reflecting 3% photons for detection, permitting more
photons to return to the next step. When the parameters
of the BS were reviewed, we can find that the smaller the
reflected parameter, the more steps the walk can imple-
ment theoretically. However, when the reflected param-
eter is too small, the polarization influence on the BS
will become more obvious, and the relative error of

(a)

(b)

Fig. 23. (a) Experimental setup of 2D time-bin quantum walk.
The x direction quantum walk was realized in the fiber loop,
while the y direction quantum walk was in the free space loop.
The AOM acts as a photo switch to guarantee the effective de-
tection of photons. (b) Reconstruction of 2D quantum walk,
where the walker walks along the x direction in step 1, while
it walks along the y direction in step 2[71].
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detection will be bigger. The second factor is the promo-
tion of detection efficiency. The efficiency of supercon-
ducting nanowire single-photon detectors can be over
90%, while it is approximately 75% for the APD.
The results of probability distributions have been

shown in Fig. 24(a). There is a localized probability dis-
tribution near the boundary at x ¼ 0 when the Hamilto-
nians Hðθ1 � θ2Þ belong to different topological phases.
The PðB; nÞ, which presents the probability of finding the
walker in the boundary region, is shown in Fig. 24(b). It is
obvious that if the edge state exists, PðB; nÞ tends to be
a constant around 0.35; otherwise, PðB; nÞ declines with
the evolution time. Figure 24(c) indicates that the spin of
edge state direction is almost j↑i or j↓i. The robustness
of the edge state also be explored by applying a noisy
EOM signal.
Another example of measuring the winding number

in a large-scale chiral quantum walk was reported by
Xu et al.[65]. Although the detection of winding numbers
had been explored[71], this experiment provided a novel
method for the framework of time multiplexing. On the
contribution of their high time resolution technology in
single-photon detection, the steps of the 1D quantum walk
were pushed to 50 with nearly no photon losses before
being detected at the last step. In this experiment, the
time evolution operator is defined as

U ðθ1; θ2Þ ¼ T−Rðθ2ÞTþRðθ1Þ; (24)

where RðθÞ ¼ e−iσyθ is the coin operator, and
T�∶ ¼ P

x jx � 1ihxj ⊗ j�ih�j þ jxihxj ⊗ j�ih�j is the
shift operator.
The setup is shown in Fig. 25; it is quite different from

the experiments above. No loop exists in this time multi-
plexing framework, and there is no extra photon loss in the
walking process. There are two innovations that confirm
this large-scale quantum walk. The first one is their quan-
tum walks module, which is shown in Fig. 25(a). For each
split step, after the rotation of the coin operator, which
is implemented by an HWP, the horizontal photons will
travel approximately 5 ps faster than the vertical ones
for the birefringence in the calcite crystals; equivalently,
the walker jumps to the right neighboring site when the

coin state is horizontal. Then, the nest step was repeated
to follow the same process. At the last step of this process,
all arrival times of photons will be measured by their high
time resolution technology, which is the other innovation.
Because the time interval is 5 ps, it is too short to be dis-
tinguished by general time of digital converter. Therefore,
detecting the coincidence count of the walker with a syn-
chronizing signal or trigger is invalid. A creative method
was designed to detect these time intervals. As Fig. 25(a)
shows, the arrival time of signal photons is measured by
scanning the pump laser and detecting the up conversion
signals with photomultiplier tubes[65]. The probability dis-
tribution of a Hadamard quantumwalk is shown in Fig. 26.
Then, on the basis of this large-scale quantum walk, the
final state can be reconstituted by the application of

(a) (c)

(b) (d)

Fig. 24. (a), (b) Probability distribution of 2D quantum walk
after 25 steps. (c) n − PðB; nÞ in different phase parameters.
(d) jdj− hzi for the parameter of θ in different phases[71].

(a)

(b)

Fig. 25. (a) Experimental setup of time-bin quantum walk in the
birefringence crystal. (b) Details and the time interval for differ-
ent steps[65].

Fig. 26. Normalized probability distribution of Hadamard quan-
tum walk after 50 steps[65].
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quantum state tomography. Then, the winding number
can be read out in different topological phases.

5. CONCLUSION

In this Letter we briefly introduced some typical experi-
mental schemes of implementation of quantum walks in
the photonic quantum system. Compared with other sys-
tems, the photonic quantum system has less requirement
on environment (such as vacuum and low temperature),
and photons can be easily manipulated through optical
elements.
We first introduced the scheme of bulk optics, which are

implemented mainly based on basic optical elements, i.e.,
PBS, q-plate, and various crystals, that can be commonly
found in most optical laboratories. In schemes with bulk
optics, the coin shift operators can be controlled more
precisely, and even different shift operators depending
on positions can be realized. However, it is difficult to
implement a larger number of steps, as the scale of the
optical structure increases rapidly with the increasing
number of steps. Decoherence is the biggest challenge that
needs to be overcome with the increase of the scale. While
in the OAM scenario, a smaller optical structure is re-
quested, since the positions are represented in the OAM
space. Then, we introduced several schemes realized with
the time-multiplexed framework. The advantage is that
the number of the steps can be very large by implement-
ing the quantum walks in the time domain. But at the
same time, the flexibility of the implementation of the
shift operator with different steps is low, which limits
its applicable scenarios. These researches on experimen-
tal implementation of quantum walks provide multiple
powerful experimental platforms for quantum algorithms,
quantum computation, quantum simulation[5,69,72], etc.
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