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Photonic waveguide arrays provide a simple and versatile platform for simulating conventional topological sys-
tems. Here, we investigate a novel one-dimensional (1D) topological band structure, a dimer chain, consisting of
silicon waveguides with alternating self-coupling and inter-coupling. Coupled mode theory is used to study topo-
logical features of such a model. It is found that topological invariants of our proposed model are described by the
global Berry phase instead of the Berry phase of the upper or lower energy band, which is commonly used in the
1D topological models such as the Su–Schrieffer–Heeger model. Next, we design an array configuration composed
of two dimer patterns with different global Berry phases to realize the topologically protected waveguiding. The
topologically protected propagation feature is simulated based on the finite-difference time-domain method and
then observed in the experiment. Our results provide an in-depth understanding of the dynamics of the topo-
logical defect state in a 1D silicon waveguide array, and may provide different routes for on-chip lightwave
shaping and routing.
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Photonic systems represent a promising platform for dem-
onstrating novel quantum concepts and implementing
quantum simulations[1–9] due to the mathematical isomor-
phism between the paraxial wave equation and the
quantum Schrodinger equation[10]. Since the idea of topo-
logically protected electromagnetic propagation was first,
to the best of our knowledge, proposed[11,12] and sub-
sequently experimentally verified in gyromagnetic media
in the microwave regime[13], many topological concepts
have been successfully extended to the optical regime
(e.g., adiabatic pumping of light[14] and photonic topologi-
cal insulators[15–18]). Notably, one-dimensional (1D) topo-
logical models [e.g., the Aubry–André–Harper (AAH)
model[19] and the Su–Schrieffer–Heeger (SSH) model[20–23]]
have attracted much attention due to relatively easy ex-
periments and potentially promising applications in ro-
bust optical circuits. Among these 1D models, the SSH
model unveiled in polyacetylene[20] presents the simplest
topological band structure to describe the topologically
protected states. The SSH model only consists of a chain
of sites with alternating coupling (i.e., a dimer chain).
It was revealed in Ref. [24] that the topologically pro-
tected states would appear in the interface between two
different dimerization patterns with distinct topological
invariants[25]. Such SSH photonic protected states have
been demonstrated in coupled microwave cylindrical
resonators[22], plasmonic waveguide arrays[21], and more
recently ring-resonator arrays[26–28]. Lately, non-Hermitian
modulations have also been introduced into the SSH

model, leading to unique light propagation properties in

these schemes[29–33].
In this Letter, we investigate the topological properties

of a chain of waveguides with alternating self-coupling and
inter-coupling.This scheme is different from the traditional
cases with constant self-coupling (in other words, identical
waveguides)[21–23]. It is found that the topological invariants
of our system are described by the Berry phase of neither
the upper nor lower energy band but their sum. Coupled
mode theory (CMT) is applied to investigate the dynamics
of the topological defect bound state, emerging at the inter-
face between two dimer chains with distinct global Berry
phases, which is experimentally observed in a silicon-on-
insulator (SOI) photonic integrated platform.

A superstructure unit formed by two different wave-
guides is used to construct a dimer chain, as shown in
Fig. 1(a). For the sake of simplicity, the individual wave-
guide in our system considered here is assumed to support
only a fundamental mode. Since the waveguides are differ-
ent in width, their fundamental modes are different in
propagation constants or self-coupling. Under the tight-
binding approximation[34], the coupled mode equations
with nearest neighbor coupling can be expressed as

i
danðzÞ
dz

¼ βaanðzÞ þ c2bn−1ðzÞ þ c1bnðzÞ; (1)

i
dbnðzÞ
dz

¼ βbbnðzÞ þ c2anþ1ðzÞ þ c1anðzÞ; (2)
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where z is the propagation distance, anðzÞ and bnðzÞ are
the modal amplitudes of waveguides A and B at the nth
dimer, respectively, βa and βb represent the corresponding
propagation constants, respectively, and c1 and c2 are the
intra-dimer and inter-dimer coupling strengths, respec-
tively. The corresponding Bloch Hamiltonian[30,31,35] is

H ðqÞ ¼
�

βa v�ðqÞ
vðqÞ βb

�
; (3)

where vðqÞ ¼ c1 þ c2 expðiqΛÞ,Λ is the period, and q is the
quasi-momentum in the Brillouin zone. By defining vðqÞ in
a new form vðqÞ ¼ vq expðiθqÞ, the eigenvalues and asso-
ciated eigenvectors of Eq. (3) are obtained:

λ� ¼ βa − η�
������������������
vq2 þ η2

q
; (4)

hλþj ¼
h
eiθq cos φ2 sin φ

2

i
; ð5Þ

hλ−j ¼
h
−eiθq sin φ

2 cos φ2
i
; ð6Þ

where η ¼ jβa − βbj∕2, and φ ¼ arctanðvq∕ηÞ. Berry
phases of the upper and lower energy bands are given
by[24,36]

ψ�
B ¼

I
ihλ�j∇q jλ�idq ¼ 1

2

I
ð1� cosφÞdθq : (7)

If η ¼ 0, this model is exactly the well-known SSH
model[20–23], and it can be obtained that ψþ

B ¼ ψ−
B based

on Eq. (7). The topological nature of this system is iden-
tified by ψþ

B (or ψ−
B), which is zero if c1∕c2 > 1 and π if

c1∕c2 < 1. In contrast, when η ≠ 0, ψþ
B (or ψ−

B) varies con-
tinuously with increasing η∕c1, so it cannot be regarded as
the topological invariant. The typical curves of ψ�

B under
the conditions of c1∕c2 > 1 (for example, c1∕c2 ¼ 5.51)
and c1∕c2 < 1 (for example, c1∕c2 ¼ 0.182) are shown in
Figs. 2(a) and 2(b), respectively. It, however, can be found

from Eq. (7) that the second terms of ψ�
B can cancel each

other. Therefore, we can define a new physical quantity,
the global Berry phase, as follows:

ψg
B ¼ 1

2
ðψþ

B þ ψ−
BÞ ¼

1
2

I
dθq ¼

�
0; c1∕c2 > 1
π; c1∕c2 < 1

: (8)

The value of ψg
B does not depend on the values of c1∕c2

(except the abrupt change at the topological transition
point c1∕c2 ¼ 1) and η, implying that the topological
invariant for this system can be described by this global
Berry phase.

A silicon photonic waveguide array on an SOI platform
is designed to study the topologically protected wave
propagation based on the aforementioned dimer chain
model. This array structure [see Fig. 1(b)] consists of
two neighboring dimer chains with distinct global Berry
phases. The large contrast between the inter-dimer and
intra-dimer coupling is required to guarantee the strong
topological protection effect and the tight defect mode
field confinement in the center waveguide[21–23]. However,
the minimum separation between waveguides is restricted
by the minimum feature size defined by the fabrication
process, so as to avoid proximity effects. The other sepa-
ration parameter can be determined by the characteristics
of the induced desired defect mode (which would be dis-
cussed in detail at the end of the article). With these con-
siderations, the parameters of this system are chosen as
follows: width of waveguide A w1 ¼ 450 nm, width of
waveguide B w2 ¼ 480 nm, height and length of both
waveguides h ¼ 220 nm and L ¼ 1000 μm, and the total
number of waveguides n ¼ 61. The refractive index of
the silicon waveguides (SWGs), silica substrate, and air
cladding at 1500 nm used in our simulations is 3.48,
1.44, and 1, respectively. The distance between wave-
guides, as shown in Fig. 1, is chosen as d1 ¼ 120 nm
and d2 ¼ 300 nm, respectively. The corresponding propa-
gation constants and coupling strengths simulated by the
finite-difference time-domain (FDTD) method are βa ¼
9.18 μm−1, βb ¼ 9.48 μm−1, c1 ¼ 0.267 μm−1, and c2 ¼
0.049 μm−1. The field propagation within the waveguide
array can be described using the CMT method as[37–40]

i
dAðzÞ
dz

¼ HAðzÞ; (9)

Fig. 1. (a) Dimer chain with intra-dimer coupling strength c1
and inter-dimer coupling strength c2. Each dimer is composed
of two waveguides, denoted as waveguides A and B. (b) Two
dimer chains with distinct topological invariants are placed next
to each other. The shadow waveguide A is with the waveguide
number zero where the light inputs.

Fig. 2. Berry phase spectra for (a) c1∕c2 ¼ 5.51 and
(b) c1∕c2 ¼ 0.182, with increasing η∕c1.
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H ¼

2
666666664

. .
.

c1 0 0 0

c1 βb c2 0 0

0 c2 βa c2 0

0 0 c2 βb c1

0 0 0 c1
. .
.

3
777777775

61×61

; (10)

where AðzÞ ¼ ½A−30;…;A−1;A0;A1;…;A30�T , and Ai rep-
resents the modal amplitude in the ith waveguide. The
calculated eigenvalue diagrams are shown in Fig. 3(a).
There are two bands separated by a bandgap, where there
exists a topological defect state (the red “A” dot). The
emergence of the defect state is due to the topological tran-
sition ðψg

B ¼ 0Þ ←→ ðψg
B ¼ πÞ at the interface[21–23]. The

midgap defect state shown in Fig. 3(a) is protected by
its isolation from bulk states, and the isolation corre-
sponds to the topological arrangement of the structure,
implying that the defect mode is topologically protected.
To highlight the property of this defect state, the modal
amplitudes of this state and two arbitrarily chosen
extended states (blue “B” dot and green “C” dot) are de-
picted in Figs. 3(b)–3(d), respectively. Clearly, the electric
field of the defect state is tightly confined on the central
waveguide, while the fields of the extended states appear
to be distributed in almost all of the waveguides.
The two-dimer-chain topological structure is fabricated

on an SOI wafer with a 220 nm thick top silicon layer and
a 2 μm buried silicon-dioxide buffer layer using electronic
beam lithography and inductively coupled plasma reac-
tive ion etching. The scanning electron micrograph
(SEM) images of this topologically non-trivial sample

[defined as SWG array (SWA-1)] are shown in Fig. 4(a).
In order to highlight the light behavior in sample SWA-1,
we have also fabricated another topologically trivial sam-
ple (defined as SWA-2), shown in Fig. 4(b), for compari-
son, by changing the waveguide spacing to a uniform one
(d1 ¼ d2 ¼ 130 nm), while keeping other parameters the
same as those of sample SWA-1. Light in-coupling is real-
ized via a grating coupler on the central input waveguide,
while light out-coupling is realized on the nine central out-
put waveguides also via grating couplers.

The light propagations in samples SWA-1 and SWA-2
are numerically simulated based on the FDTD method,
and the obtained results are shown in Figs. 5(a) and
5(c), respectively. In particular, the topological defect
bound state is successfully observed, which remains local-
ized in the central waveguide during propagation. This
kind of behavior is consistent with the modal field distri-
bution analyzed by CMT, as shown with the bar graph in
Fig. 3(b). Notice that there is slight field spreading to the
next nearest neighbor waveguides on both sides due to
propagation phase matching [see Figs. 3(a) and 3(b)].
In contrast, in the topologically trivial equidistance wave-
guide array, light spreads out as it propagates, and much
of the light is concentrated in two outer side lobes, as

Fig. 3. (a) Eigen spectrum of the two-dimer-chain model illus-
trated in Fig. 1(b). The red “A” dot represents the topologically
protected defect mode, and other dots (including the blue “B”
dot and green “C” dot) represent the extended states. (b) Modal
amplitude distribution of the topological defect mode, labeled
the “A” dot in (a). (c), (d) Modal amplitude distribution of ex-
tended states, labeled the “B” dot and “C” dot in (a),
respectively.

Fig. 4. SEM images of the fabricated SOI waveguide arrays.
(a) Two-dimer-chain structure. (b) Uniform array. The input
waveguide merges into the center waveguide of the arrays.

Fig. 5. (a), (c) Numerically simulated intensity distributions for
light propagation in samples SWG-1 and SWG-2, respectively.
(b), (d) Experimentally measured and simulated transmission
at the output of samples SWG-1 and SWG-2, respectively.
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shown in Fig. 5(c). Notice that the light is reflected at the
boundary of this waveguide array with the propagation
distance of ∼700 μm. This diffusive behavior of light is
well described by the “discrete diffraction” revealed in
Refs. [41,42].
The experimentally measured transmission of the cen-

tral nine waveguides of SWG-1 is depicted using the blue
bars in Fig. 5(b). It is confirmed experimentally that most
of the light remains in the central waveguide (∼70%),
proving the existence of the topological defect state. In
contrast, the measured transmission profile of SWG-2 in-
dicates that there is very little power at the output of the
nine central waveguides (almost 40 times smaller com-
pared with that in SWG-1). The overall light propagation
trend is consistent with the results predicted by FDTD
simulations in Figs. 5(b) and 5(d) (see the red bars).
The slight deviation between the experimental results
and the simulation ones is mostly attributed to the fabri-
cation imperfection. Nevertheless, these results suggest
that the propagation behavior of light can be drastically
changed by engineering unique topological features in the
waveguide arrays.
Here, we would like to investigate the relation between

the propagation constants of points A, E, and F illustrated
in Fig. 3(a) and the inter-waveguide coupling ratio
(c1∕c2). As shown in Fig. 6(a), the gap between points
A and E, and the gap between points A and F increase
as c1∕c2 increases. The big gap reflects the big propagation
constant difference between the defect mode and the bulk
modes. Thus, the choice of the large coupling ratio
(c1∕c2 ¼ 5.4) in this manuscript is to ensure the strong
topological protection effect of the defect mode, since it
is difficult for the defect mode to be coupled with other
modes under perturbation, such as the inevitable fabrica-
tion error. Moreover, as shown in Fig. 3(b), the electric
field of the defect state is tightly confined on the central
waveguide, and thus the defect mode is easily excited and
observed in the experiment. In contrast, the small cou-
pling ratio is undesired, since the defect mode is less robust
to perturbation and more difficult to be excited and ob-
served experimentally due to more diffused modal field
distribution, as shown in Fig. 6(b). It is also found that
the propagation constant of the defect state is not affected

by the inter-waveguide coupling ratio (c1∕c2) and is ex-
actly equal to the propagation constant of the fundamen-
tal mode of the center waveguide, which may be due to the
nature of the topological transition interface. Such a
defect mode is also called the topological zero mode in
Refs. [21,32].

Finally, the topological protection effect of this struc-
ture is verified by testing its robustness against the struc-
tural disorder. The structural disorder is introduced by
defining the waveguide separations as[21,32]

~dn1 ¼ d1 þ
W
2
ξn; (11)

~dn2 ¼ d2 þ
W
2
ξn; (12)

where W is the disorder strength corresponding to the
maximum fabrication error. Here, W is chosen as
15 nm, and ξn is a random number uniformly distributed
in the interval ½−1; 1�, influencing the nth unit cell. The
random variables in the nth and the mth unit cells, ξn
and ξm, are independent if n ≠ m. As shown in Fig. 7,
the non-spreading property of light propagation is almost
maintained, implying the robustness of the structure to
the disorder.

In summary, we investigate a 1D topological band
structure, the superstructure dimer chain, of which the
unit cell consists of two different SWGs with different
widths. In this unique system, the topological invariant
is described by the global Berry phase rather than the
Berry phase of the individual energy band that is com-
monly used in the 1D topological models such as the
SSH model. An on-chip silicon photonic waveguide array
with different global Berry phases is designed to imple-
ment our theoretical model. Topologically protected
propagation is observed experimentally as a localized in-
terface state. Our results could help deepen the under-
standing of topological properties of 1D coupled
waveguide arrays, and may have potential applications
in on-chip information routing and processing. Besides,
our results pave the way towards novel approaches to
localize light on the interface between two photonic crys-
tals and may apply to adiabatic pumping of light[14], and

Fig. 6. (a) Propagation constants of points A, E, and F as func-
tions of the coupling ratio c1∕c2. c2 is a variable, and other
parameters are constants. (b) Modal amplitude distribution of
the topological defect mode when c1∕c2 ¼ 1.2.

Fig. 7. Light field evolution for the disordered two-dimer-chain
model.
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the concept of the corresponding interface states can be
extended to higher-dimensional systems with alternating
self-coupling and inter-coupling.
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