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We propose here a novel method for position fixing in the micron scale by combining the convolutional neural
network (CNN) architecture and speckle patterns generated in a multimode fiber. By varying the splice offset
between a single mode fiber and a multimode fiber, speckles with different patterns can be generated at the
output of the multimode fiber. The CNN is utilized to learn these specklegrams and then predict the offset
coordinate. Simulation results show that predicted positions with the precision of 2 μm account for 98.55%.
This work provides a potential high-precision two-dimensional positioning method.
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The appearance of mode division multiplexing (MDM)
thrives in the investigation of few mode fibers (FMFs)
and multimode fibers (MMFs). Among these investiga-
tions, MMF speckle is one of the most important areas,
since it carries a lot of information of multiple modes,
and it is formed by coherent superposition of different fi-
ber modes. Because of its complex intensity distribution,
speckle presents many special characteristics to be studied
and utilized. One of the applications of speckle is the fiber
specklegram sensor (FSS)[1]. Different from the conven-
tional fiber sensor, which usually emphases variation of
spectrum, the FSS achieves high sensitivity via recording
the speckle variation.
FSSs can realize almost all the functions of ordinary fi-

ber sensors. For instance, the FSS is able to achieve tem-
perature sensing by recording the change in the
correlation coefficient of specklegrams under different
temperatures[2]. The intensity distribution of speckle
changes dramatically if twist is exerted on the MMF,
and twist sensing is realized by the variation of the corre-
lation coefficient[3]. The speckle pattern is also sensitive to
the strain and bending on MMFs[4,5]. Besides the applica-
tions in the sensing of fundamental physical parameters,
FSSs have already been employed to measure the physio-
logical activities, such as body motion and heart rate of
patients lying in bed[6]. With minimal invasion technology,
MMF speckle can be applied in deep brain fluorescence
imaging[7], which highly promotes the development of
medical images. In most cases of FSSs, sensing is demodu-
lated by the correlation coefficient function, and in some
special situations, the rotation angle of speckle is chosen to
demodulate variation[8]. However, either the correlation
coefficient or rotation angle commonly neglects many de-
tails in speckle. In order to fully apply the speckle

information, speckles of different wavelengths are pro-
jected on different CCD positions to demodulate FSSs
in terms of wavelength and space[9]. Researchers also came
up with the concept of speckle division multiplexing to
solve the influence of perturbation on speckle pattern[10].
Recently, deep learning technologies show great potential
in solving complex speckle-related problems. Convolu-
tional neural networks (CNNs) and feedback neural net-
works showed good performances in fiber specklegram
vibration sensors[11]. Deep neural networks (DNNs) were
used to classify and reconstruct handwritten digits in
MMF systems[12], and similar studies using different neural
networks were also reported[13,14]. CNN could also realize
object classification through MMF[15]. Further, deep learn-
ing performed well not only in classification problems but
also in regression problems. For example, CNN architec-
ture was used to analyze the modal power distribution in a
rectangular multimode waveguide[16] and FMF[17,18]. A sim-
ilar method was also applied in beam quality prediction[19]

and orbital angular momentum mode purity analyzing[20].
Misalignment measurement is a crucial issue in optical

systems[21]. The micro displacement fiber sensor is indis-
pensable in many medical and industrial applications[22].
However, the reported micro displacement sensor only
shows high precision in one dimension, which is a barrier
for practical applications. The investigation of the two-
dimensional micro displacement sensor or micron horizon
positioning is highly demanded. Considering that light
transmits from the single mode fiber (SMF) to the MMF,
higher-order modes can be easily excited in MMF if the
centers of these two fibers do not coincide, and different
specklegrams can be generated from different offset points.
This process, however, is a kind of micro displacement.
CNN architecture is used to predict location and fixed

COL 18(5), 050602(2020) CHINESE OPTICS LETTERS May 2020

1671-7694/2020/050602(5) 050602-1 © 2020 Chinese Optics Letters

mailto:hotrosemaths@163.com
mailto:hotrosemaths@163.com
http://dx.doi.org/10.3788/COL202018.050602
http://dx.doi.org/10.3788/COL202018.050602


positions in vehicles and geography[23,24]. The combination
of speckle and CNN is a nice choice to fix positions in the
micron horizon.
In this Letter, we present a speckle-based positioning

method in the micron horizon using CNN. The relation-
ship between speckle distribution and the offset point is
studied through simulation, and then we design a CNN
to learn the relationship. Calculation results demonstrate
that 98.55% predicted coordinates in the validation set are
within 2 μm from the corresponding labeled offset coordi-
nates, and the points with larger errors are mainly distrib-
uted on the edge of the studied plane. The investigation
shows potential application in two-dimensional micro dis-
placement fiber sensors.
High-order modes tend to be excited inMMF if the SMF

and MMF are offset spliced with each other[25]. Figure 1
illustrates a schematic of the offset splicing of the two fi-
bers. Assuming that no offset exists in the process of splic-
ing, the union of the distal surface of the SMF and front
surface of the MMF is centrosymmetric, but that turns to
axisymmetric if the centers of the SMF and MMF do not
coincide. From Ref. [8], we learn that the axisymmetric
fundamental mode can be partly converted to the centro-
symmetric higher-order mode at the offset splicing point.
The proportion of each fiber mode under different offset
splicing points is varied, and thus, we can derive different
specklegrams in this way, which provides the potential to
realize big data driven locations using the deep learning
method.
When two different waveguides (such as an SMF and an

MMF) are spliced together, the mode excitation ratio
(MER) of the μth mode in the output waveguide can
be expressed as

ημ¼
½RR ð→E in×→H �

μÞ·ẑdxdy�2
½RR ð→Eμ×→H �

μÞ·ẑdxdy�½RR ð→E in×→H �
inÞ·ẑdxdy�:

(1)

Here, ~E in and ~H in are the electromagnetic field distribu-
tions in the input waveguide, and the electromagnetic field
distributions of the μth mode in output waveguide are rep-
resented by ~Eμ and ~H μ. Once a coordinate system is
defined, we can calculate the MER of each mode under
different offset points. As shown in Fig. 1, the original
point is set as the center of the MMF. The MMF we
use in this Letter is the same as that in Ref. [8], which
can support 110 vector modes, with a core diameter of
50 μm and the NA of 0.2. The SMF is SMF-28, and input

light in the SMF is the y-polarized fundamental mode. We
solve the electromagnetic field distribution of each mode
using the finite element method.

Figure 2 illustrates the MERs of different modes in the
MMF under different offset points in the x direction (the
offset distance in the y direction is zero) at the wavelength
of 1550 nm. Here, the order of the mode is arranged as the
effective refractive index descends. Obviously, higher-
order modes are easily excited in large offset distance
situations, and the MER over the x axis is symmetric
about the original point. Speckle intensity distribution
is calculated by

I ðx; yÞ ¼

�������
X110
ν¼1

ημ~Eμðx; yÞe−jβμz������������������������������������������������RR �
~E in × ~H �

in

�
·ẑdxdy

r
�������

2

: (2)

Here, βμ is the propagating constant of the μth mode,
and z represents fiber length. In the following analysis,
the fiber length is fixed at 10 cm.

In the inset of Fig. 3, we perform the speckle patterns of
five different offset points on the x axis. The mode speckle
changes drastically and tends to centralize when the offset
point varies from −25 μm to 0 and discretizes as it goes up
from 0 to 25 μm. To investigate the trend intuitively, an
auto-correlation function of these specklegrams is defined
in Eq. (3):

ΨðdÞ ¼
RR

i0iddxdy
ðRR i20dxdy

RR
i2ddxdyÞ1∕2

; (3)

where i represents the intensity distribution after remov-
ing the background light, i0 is the intensity distribution
when there is no offset, and id is the intensity distribution
over different offset points. Figure 3(a) depicts the auto-
correlation function versus offset point in the x direction.
Figure 3(b) is the auto-correlation function in the whole
investigated plane, and the correlation value varies signifi-
cantly in the whole plane, which is the basis of image
feature recognition.

The aforementioned analysis points out how the offset
point of the two fibers influences the MER. Figure 4 per-
forms the excitation ratio of the particular modes over

Fig. 1. Schematic of offset splicing.
Fig. 2. Excitation efficiency of each fiber mode versus offset
point (offset direction: x axis).
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different offset points in the whole investigation plane.
Coincidentally, the excitation efficiency distribution of
the third and the seventh lower modes is centrosymmetric

about the original point (the center of MMF), which is
very similar to the linearly polarized LP11 mode and
LP21 mode, respectively. Actually, Eq. (1) represents the
vector overlap extent of two different modes. In our situa-
tion, the input fundamental mode in the SMF and modes
in the MMF are centrosymmetric, and the MER profile of
one specific mode in theMMF is dependent on its intensity
profile in one polarization direction. Thus, we only need to
study the situation of the half-plane to avoid identical
speckle pattern, since the MER profile of every mode in
the MMF is centrosymmetric. To testify to this, Figs. 5(a)
and 5(b) show speckle distributions under two centrosym-
metric offset points [(6 μm, −5 μm) and (−6 μm, 5 μm)],
and they are identical. Meanwhile, as Fig. 3(b) shows, the
correlation function in the whole plane is also centrosym-
metric. That is to say, if we take the whole plane into con-
sideration, identical specklegrams will be derived, and the
prediction rate will decrease. In order to reduce wrong pre-
dictions, we only account for the points in the upper half-
plane in Fig. 3(b).

Figure 6(a) shows the steps of data generating and
processing. Firstly, MER is calculated using Eq. (1). Here,
the interval in the x and y directions is 0.5 μm. In order to
acquire more training data, the calculated MERs at differ-
ent offset points are interpolated, and the amount of data
quadruples that before interpolation. Thus, the total num-
ber of training and test data reaches 20,201. Secondly,
specklegrams are constructed according to Eq. (2) using
MERs obtained in the first step. The array size is limited
to 102 × 102 × 1. Thirdly, the training and test data are
converted to 8 bits images. The conversion equation is

I cðx; yÞ ¼
I ðx; yÞ−min½I ðx; yÞ�

max½I ðx; yÞ�−min½I ðx; yÞ� ; (4)

Fig. 3. Auto-correlation function of specklegrams: (a) offset
point in the x direction varies from −25 μm to 25 μm; (b) offset
point in the whole plane.

Fig. 4. Excitation ratio of (a) the third and (b) the seventh lower
modes at different offset points.

Fig. 5. Specklegrams of two centrosymmetric offset points:
(a) (6 μm, −5 μm) and (b) (−6 μm, 5 μm).
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where I ðx; yÞ is the speckle intensity distribution. Also, all
of the coordinates are normalized in the range of [0, 1] [the
normalized coordinate is represented by (X , Y )]. The
specklegrams are sent to trained CNN architecture in
the fourth step, which is the most crucial step in the whole
data processing system. As shown in Fig. 6(b), the CNN
architecture contains four convolutional layers, four max
pooling layers, and four fully connected layers. The size of
each convolutional layer is 3 × 3 with strides of 1 × 1, and
the number of filters is 16, 32, 64, and 128, successively.
The activation function of each convolutional layer is a
rectified linear unit (ReLU). After each convolutional
layer, we set a max pooling layer with the size 2 × 2
and stride 1 × 1. Before being sent to the fully connected
layer, the data is flattened to one dimension. The first
three fully connected layers are 256 in size and use ReLU
as the activation function. The last fully connected layer
contains two neurons, which represents the predicted off-
set point, and the activation function is sigmoid. We ran-
domly select a dataset containing 2000 specklegrams as
the validation set, and another 18,201 specklegrams are
assigned to the training set. The learning rate is set to
0.001, and the number of epochs is 30. In every epoch,

mini batches with the size of 16 are sent to the CNN
architecture.

Figure 7 shows the loss value under different epochs,
which is defined by the mean square error (MSE) between
the predicted and the labeled offset coordinates:

MSE ¼ 1
m

Xm
i¼1

h�
X ðiÞ

p − X ðiÞ
l

�
2 þ

�
Y ðiÞ

p − Y ðiÞ
l

�
2
i
: (5)

Here, m is the number of validation samples. Normalized
predicted and labeled offset coordinates are denoted by
ðXp;YpÞ and ðXl ;YlÞ, respectively. After training for
30 epochs, the training loss ends up with 1.28 × 10−3,
and the validation loss value is 1.31 × 10−3. The training
results verify that our model begins to converge after
training for two epochs, and no over-fitting or under-
fitting exists.

To evaluate the effectiveness of our system, the relation-
ship between the predicted and the labeled offset points is
investigated. The distance difference between the pre-
dicted and labeled offset points is defined by

d ¼
������������������������������������������������
ðxp − xlÞ2 þ ðyp − ylÞ2

q
; (6)

where ðxp; ypÞ and ðxl ; ylÞ are actual coordinates rather
than normalized coordinates of the predicted and labeled
offset points. Figure 8 illustrates the distribution of dis-
tance difference. When d is less than 2 μm, the percentage
reaches 98.55%. When d is within the range of 0 to 1.5 μm,
the ratio is higher than 94%, which turns to 75.05% if d is
less than 1 μm. The predicted result is reliable in micron
horizon positioning. As Fig. 3(b) shows, the auto-
correlation values are very close to each other in the range
of 2 μm.

Figure 9 performs the labeled offset points with corre-
sponding d higher than 2 μm. Nearly all of the points with
larger error come from the line y ¼ 0 (x axis in the Car-
tesian coordinate system), especially in the situation
where d is higher than 3 μm. As Fig. 3(a) shows, speckle-
grams on the x axis are centrosymmetric. Thus, when an
offset point comes from this plane, except the line y ¼ 0,

Fig. 6. (a) Data processing flow and (b) CNN architecture.

Fig. 7. Loss versus training epoch (loss, MSE in training set; and
val_loss, MSE in validation set).

Fig. 8. Distribution of difference between the prediction label
and validation label.
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we can predict the offset coordinate accurately via the pro-
posed CNN architecture.
In the future, we will try to verify our theoretical analy-

sis in experiment. Since multimode speckle is sensitive to
any perturbation in its surrounding environment, MMF
should be short enough (not larger than 10 cm) and should
hold in a customized fiber fixture. Besides, a high-preci-
sion translation platform is needed to adjust the offset
point on the input plane of the MMF. The input SMF
should be fixed to prevent twist-induced polarization
variation.
In this Letter, we try to use a fixed position in the micron

scale using CNN architecture. To the best of our knowl-
edge, it is the first time that a fiber-based sensor is theoreti-
cally used to realize two-dimensional micro displacement
sensing. Different offset points decide different speckle-
grams, which provides learning data to CNN architecture.
Simulation results demonstrate that 98.55% predicted
offset coordinates are within 2 μm of their corresponding
labeled offset coordinates, and the rest of the predicted off-
set coordinates with large deviation mainly come from the
border of the calculated domain. In all, the proposed
method is effective for predicting offset coordinate between
the SMFandMMFvia specklegrams at the distal end of the
MMF.We believe this work provides a very useful method
for two-dimensional displacement measurement.

This work was supported by the Outstanding Youth
Science Fund of Hunan Provincial Natural Science Foun-
dation (No. 2019JJ20023) and the National Natural
Science Foundation of China (NSFC) (No. 11974427).
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