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Imaging through scattering media via speckle autocorrelation is a popular method based on the optical memory
effect. However, it fails if the amount of valid information acquired is insufficient due to a limited sensor size.
In this Letter, we reveal a relationship between the detector and object sizes for the minimum requirement to
ensure image reconstruction by defining a sampling ratio R, and propose a method to enhance the image quality
at a small R by capturing multiple frames of speckle patterns and piecing them together. This method will be
helpful in expanding applications of speckle autocorrelation to remote sensing, underwater probing, and so on.
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Seeing through scattering media is highly desired in many
occasions, such as remote sensing through clouds, fog, and
haze; underwater detection; anti-terrorism surveillance;
biological tissue imaging; and clinical diagnosis. However,
multiple scattering experienced by photons when propagat-
ing in scattering media breaks the point-to-point correspon-
dence required by traditional imaging methods[1,2]. In order
to solve the problem, people developed many techniques in-
cluding time gating[3–5], wavefront shaping[6–10], diffuse opti-
cal tomography[11], transmission matrix measurement[12–16],
optical phase conjugation[17–23], speckle deconvolution[24], and
speckle autocorrelation[25–29]. Among these methods, the
speckle autocorrelation method exploits the memory effect
(ME) to reconstruct the image of a hidden object from a
speckle pattern, which is simple, fast, and non-invasive.
In speckle autocorrelation imaging, the autocorrelation

of a speckle pattern consists of an autocorrelation of the
object with a magnification factor determined by the ex-
perimental setup and a random noise background, which
leads to a disturbed frequency spectrum of the object and
sequentially a degraded reconstruction quality. This issue
can be tackled by capturing a speckle pattern with a large
sampling ratio R defined as R ¼ rDu

rOv
, where rD and rO are

the radii of the detecting area and the object, respectively;
for simplicity, only circular areas are considered here; and
u and v are the distances from the object and the camera
to the medium when it is thin, respectively. For an exper-
imental setup with fixed values of u, rO, and rD, as R in-
creases, more independent speckles are detected, resulting
in a smoother noise background after ensemble averaging.
Of course, the object is always within the ME range[30] in
the above discussion.
In experiment, for a small v, this condition can be easily

satisfied by using an ordinary detector to capture a frame

of speckles with a large R. However, in practice it is diffi-
cult to place the camera close to the media in some situa-
tions, which limits the sampling ratio and therefore the
amount of valid information, resulting in a low-quality
or even failed reconstruction. An intuitive solution is in-
creasing the sensor area and/or employing a large aperture
lens, however, this is expensive, space-consuming, and
sometimes unrealistic.

In this Letter, by utilizing the equivalence between the
spatial and temporal ensemble average of speckles[2], we
propose a simple and fast method for imaging through dy-
namic scattering media with a stitched speckle pattern.
In particular, we acquire many speckle patterns with dif-
ferent point spread functions in sequence with a small sen-
sor, stitch them together to get a big speckle pattern, and
then reconstruct the image from the stitched pattern. In
this way we can reconstruct the image well even when the
sensor area is insufficient for a large image distance with-
out any need for hardware upgrade. Compared to purely
averaging (or summing) the autocorrelation, the stitching
method can suppress the background noise and
simultaneously increase the resolution of the power spec-
trum for more details, which is crucial in applications like
remote sensing.

In the following, we first show the equivalence between
the stitched speckle pattern and the one captured with a
large camera sensor. Then we experimentally demonstrate
the improvement of image quality with increased stitching
number compared to pure averaging. Last, we perform
simulations to study the trend of image quality with
stitching number and the theoretical lower threshold of
R for our method to be valid.

The ME is the prerequisite of speckle autocorrelation
imaging, which essentially demonstrates that speckle
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patterns generated by different points within the ME
range are shifted but highly correlated[31,32]. When an ob-
ject hidden behind the scattering medium (within the ME
range) is illuminated by a spatially incoherent light
source, the corresponding speckle pattern on the camera
can be seen as a superposition of speckle patterns gener-
ated by all points of the object[33]. In other words, the
speckle pattern is a convolution of the object intensity
and the point spread function (PSF), i.e.,

I ðx; yÞ ¼ Oðx; yÞ � PSFðx; yÞ; (1)

where � denotes the convolution operator and O is the ob-
ject intensity distribution. Then, the autocorrelation of
the speckle pattern I can be expressed as

I ⋆ I ¼ ðO � PSFÞ ⋆ ðO � PSFÞ
¼ ðO ⋆ OÞ � ðPSF ⋆ PSFÞ; (2)

where ⋆ is the correlation operator. For succinctness, the
(x; y) coordinates are omitted here and afterward. Since
the autocorrelation of the PSF is a peaked function[25,27,33],
Eq. (2) can be simplified as[27]

I ⋆ I ≈O ⋆ O: (3)

According to the Wiener–Khinchin theorem, the power
spectrum of an object is equal to the Fourier transform of
its autocorrelation,

��F ðOÞ��2 ¼ F ðO ⋆ OÞ: (4)

Then we can reconstruct the image with a phase
retrieval algorithm[27,34,35].
Considering an imaging system with a detector of a

large enough area, the PSF can be divided into n ×m
subblocks with the same size, each with its own PSFk ,
where k ¼ 1; 2; 3;…; n ×m, as shown in Fig. 1(a). For sim-
plicity, we choose m ¼ n as follows. The autocorrelation
of each PSFk is also a peaked function, and there is no
mutual correlation between different subblocks. Similarly,
the speckle pattern with a large sampling ratio can also
be divided into n × n subblocks, each of which can be
considered as the convolution of the object and the

corresponding PSFk ; that is, I k ¼ O � PSFk , where
k ¼ 1; 2; 3;…; n × n, as shown in Fig. 1(b). The whole
speckle pattern is seen as a combination of stitching
these subblocks together, i.e.,

I ¼ I 1 ∪ I 2 ∪ I 3 ∪ … ∪ I n×n; (5)

where ∪ is a stitching operator and n is defined as the
stitching number. The autocorrelation of I turns to be

I ⋆ I ¼
Xn×n

k¼1

I k ⋆ I k þ
Xn×n

i¼1

Xn×n

j¼1

I i ⋆ I jði ≠ jÞ

≈
Xn×n

k¼1

I k ⋆ I k ; (6)

where I i ⋆ I jði ≠ jÞ ≈ 0.
For a dynamic scattering medium, here, only Brownian

motion is considered, the PSF varies with time and the
intensity fluctuation is ergodic in both spatial and tempo-
ral domains[2], and the decorrelation time τ is used to
quantify the decorrelation speed of the PSF. Assuming
that we detect two PSFs, PSFt1 and PSFt2 at two different
times t1 and t2; if t2 − t1 > τ, the two PSFs are indepen-
dent. Referring to the stitching operation that uses
different spatial subblocks mentioned above, we can
acquire n × n independent frames of speckle patterns
with different PSFs in sequence: I tk ¼ O � PSFtk , k ¼
1; 2; 3;…; n × n, and stitch them together into an n-by-n
array to get a large speckle pattern I∪ (see Fig. 2) with
an equivalent sampling ratio R∪ ¼ nR,

I∪ ¼ I t1 ∪ I t2 ∪ I t3 ∪ … ∪ I tn×n
: (7)

According to Eqs. (1)–(7), the Fourier transform ampli-
tude of the object can be derived as

��F ðOÞ�� ¼
������������������������������F ðI∪ ⋆ I∪Þ

��q
: (8)

Then the object can be reconstructed by an iterative
phase-retrieval algorithm[27]. This method increases the de-
tection area digitally by stitching small speckle patterns
together into a large one, and thus is especially suitable
for the conditions with a smallR. In addition, the stitching
method differs from the autocorrelation averaging method

Fig. 1. Schematic illustration of stitching. (a) A big speckle
pattern is split into many subblocks, and each subblock has
its own independent PSFk . In other words, the big speckle pat-
tern is obtained by stitching all independent subblocks together.
(b) The segmentation of a big speckle pattern I .

Fig. 2. Diagram of piecing together a series of speckle patterns
fI tkgn×n

k¼1 [shown as subfigure (a)] into (b) a big speckle pattern;
the yellow square frame denotes a single speckle pattern I tk .
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in that the autocorrelation image of the former one has a
greater number of pixels than the latter one, which thus
leads to a finer Fourier spectrum. Specifically, if a single
speckle pattern has N × N pixels, then its autocorrelation
has 2N × 2N pixels and the corresponding Fourier spec-
trum is a 2N × 2N array. In stitching, the stitched pattern
has an array size of nN × nN , resulting in a 2nN × 2nN
Fourier spectrum array. Hence, the spectral resolution
accessible by the stitching method is n times that of
the autocorrelation averaging method.
A schematic experimental setup is shown in Fig. 3.

A pseudo thermal source generated by a 532 nm laser shin-
ing on a rotating ground glass disk illuminates a home-
made binary object. The light emitted from the object
transmits through a scattering layer and is detected by
a CCD camera (AVT Stinggray F-504B) with an array
size of 2452 × 2056 and a pixel pitch of 3.45 μm. An iris
with a diameter of 3 mm is placed close to the exit
surface of the layer to control the contrast and size of the
recorded speckles. The scattering layer is made of tissue-
mimicking porcine gelatin (a mixture of porcine gelatin,
distilled water, and 20% intralipid) with a scattering co-
efficient of μS ¼ 6 mm−1 and a thickness of L ¼ 0.6 mm.
At room temperature, the measured decorrelation time
of the scattering layer is τ ¼ 4 s. The half diagonal line
of the object rO ¼ 160 μm is selected as its radius, the ob-
ject distance u ¼ 6 cm, and the center 2000 × 2000 pixels
of the sensor are used for recording. We recorded the

speckle pattern sequences at v ¼ 12; 24; 36 cm with the
corresponding sampling ratios ofR ¼ 10.8; 5.4; 3.6, respec-
tively. The time interval between the two adjacent frames
is set to 20 s to ensure that there is no mutual correlation
between different patterns. The results are shown in Fig. 4.
It shows that as R decreases the background noise in the
speckle autocorrelation gradually submerges the object
autocorrelation. By stitching different speckle patterns,
the object can be reconstructed from the autocorrelation
of the speckle under different R, while pure averaging
of the speckle autocorrelation fails. For the stitched pat-
terns with the same R∪, the corresponding reconstruction
qualities are comparable to each other, although the re-
constructed image slightly deteriorates as R decreases.
Compared to a single power spectrum, the averaged one
has a better SNR, but somehow is still worse than the
one obtained from the stitched speckle pattern. We will
give an explanation later. In experiment, the inevitable
noise, such as background and electrical noise, stands in
the way to find the lower bound of R, and interferes with
the comparison between the spectrum and the trend of the
image quality with the stitching number n. In order to
avoid these disturbances, we use simulations for further
investigation. With simulations, we studied the relation-
ship between the image quality and stitching number at
the same R, and the relationship between the image qual-
ity and R under the same equivalent sampling ratio R∪.

Figure 5 shows the simulations of the influence
of the stitching number on the autocorrelation and
reconstruction quality. In the simulation, u ¼ 6 cm,
v ¼ 30 cm, rO ¼ 160 μm, rD ¼ 1.6 mm, and thus R ¼ 2.
The correlation coefficient (CC) between the recovered
image and the amplified target of the same size is
used to quantify the reconstruction quality. CC ¼P

i

P
j
ðAij−ĀÞðBij−B̄Þ��������������������������������������������������������������������hP

i

P
j
ðAij−ĀÞ2

i hP
i

P
j
ðBij−B̄Þ2

ir , where Aij , Bij are the

individual pixel intensities of the reconstructed image

Fig. 3. Experimental setup. u and v are distances from the object
and the camera to the scattering layer, respectively.

Fig. 4. Experimental results. Rows I, II, and III correspond to R ¼ 10.8, 5.4, and 3.6, respectively. (a) Examples of captured speckle
patterns, and (b) the corresponding autocorrelations of (a). (c) The power spectra of (a), (d) the averaged power spectra, and (e) the
images reconstructed from (d). (f) The stitched speckle patterns at different sampling ratios and numbers of frames: R ¼ 10.8, 4 × 4
frames (row I);R ¼ 5.4, 8 × 8 frames (row II); andR ¼ 3.6, 12 × 12 frames (row III), respectively. (g) The corresponding power spectra
of (f), and (h) the images reconstructed from (g). (II,i) The autocorrelation and (III,i) the frequency spectrum of (I,i), the object.
The inserts in rows II and III, and columns (c), (d), and (h) show zoom-ins of the center dash squares.
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and the amplified target, respectively, and Ā, B̄ are the
mean intensities, respectively. Obviously, the stitching
method can suppress the noise and increase the resolution
in the power spectrum for more details (the autocorrela-
tion image of the stitching method has more pixels than
that of the autocorrelation summing method, which thus
leads to a finer Fourier spectrum, as shown in Figs. 5(IV)
and 5(V), and local magnification diagrams). As the
stitching number n increases, the quality of the speckle
autocorrelation and reconstructed image improves. How-
ever, the improvement speed gradually decreases, so there
is no need to pursue R to be as large as possible since the
gain is trivial when the equivalent R∪ is big enough.
Next, we investigated the relationship between the

image quality and R under the same equivalent sam-
pling ratio R∪. The simulations were done at fixed
rO ¼ 160 μm, rD ¼ 0.64 mm, and u ¼ 6 cm, but different
v ¼ 3; 6; 12; 24; 30 cm, corresponding to R ¼ 8; 4; 2; 1; 0.8,
respectively. We chose the speckle pattern of R ¼ 8 as
a reference and stitched each set of speckle patterns of
R ¼ 4; 2; 1; 0.8 into synthesized patterns that have the
same R∪ as the reference one, i.e., stitching 2 × 2, 4 × 4,
8 × 8, and 10 × 10 small original speckle patterns into
a big one. Figure 6 shows the simulation results. When
R ≥ 1, the autocorrelation quality can be improved by
stitching, and the image can be reconstructed completely.
However, for R ¼ 0.8, we cannot obtain a complete struc-
ture of the autocorrelation or power spectrum to recover
the image. As is known with lack of axial resolution,

speckle autocorrelation imaging is similar to pinhole imag-
ing. If we see the scattering layer as countless pinholes
with randomly shifted centers, the detected speckle pat-
tern is a superposition of all the shifted images of the ob-
ject. When the entire image is located within the sensor
area, its autocorrelation and power spectrum are the same
even though its center is shifted and can be added coher-
ently. Otherwise, the autocorrelation and power spectrum
will be changed, and summing this part may be not helpful
in image reconstruction. Thus, in order to make sure at
least one complete image is obtained, the sampling ratio
R should not be less than 1, i.e., the valid detection area
radius cannot be smaller than v

u rO. In other words, the
angle of the detector should not be smaller than the angle
of the target when viewing the scattering layer.

In Fig. 6(f), the CC curve has a steep falling around
R ¼ 1. A possible explanation is that at the edges of each
detected speckle pattern some speckle grains are broken;
for a smaller R, the fraction of broken speckle grains is
large, which results in less independent speckle grains in
the ensemble average, and hence a deteriorated image
quality.

In this Letter, we should keep in mind that in the experi-
ment the exposure time of the CCD camera should be
less than the decorrelation time, and the speckle record-
ing must comply with the Nyquist sampling law. In the
above experiments and simulations, each reconstruction
is carried out under the same number of iterations of the
phase retrieval algorithm. Due to the randomness caused

Fig. 5. Simulation results of different stitching numbers at R ¼ 2. Row I. (a) A single original speckle pattern; and (b) 4, (c) 9, (d) 36,
and (e) 64 original patterns stitched together equally in two directions. Row II. The autocorrelations corresponding to I. Row III. The
respective images reconstructed. Row IV. The averaged power spectra of 1, 4, 9, 36, and 64 frames of the original patterns. Row V.
The corresponding power spectra of row I. (f) The evolution of the correlation coefficient with stitching number n. In rows IV and V, all
have the same spectrum range because of the same pixel pitch. However, the power spectra of the stitched patterns have a higher
resolution determined by the array size, which can be seen clearly from the amplified dash squares.

COL 18(4), 042604(2020) CHINESE OPTICS LETTERS April 2020

042604-4



by phase retrieval algorithm, the image quality could
fluctuate slightly. Because of the background noise, the
actual stitching number required in the experiment is
always larger than that in the simulation to achieve a com-
parable reconstruction quality under the same sampling
ratio. Compared to simple averaging, stitching can sup-
press the background noise, and simultaneously enhance
the resolution in the frequency domain to see more details,
which is critical to reconstruct the image, especially for a
small sampling ratio R.
Different from solid bodies like rotating ground glass

disks, white paint, tissue mimicking phantoms, and bio-
logical tissues, the decorrelation time of fog and polluted
water is orders-of-magnitude smaller, with a characteristic
time of microseconds[36]. By utilizing the shorter decorre-
lation time, an automatic stitching speckle pattern can be
realized by scanning over an array of cheap industrial
CCD cameras, which is competitive in cost, dynamic
range, and extensibility compared to a billion-pixel cam-
era. It provides an alternative real-time imaging solution.
In addition, the stitching method can also apply to a
moving object, as long as the object is approximately sta-
tionary within each exposure time and the object itself is
within the memory effect range.
In conclusion, we reveal a relationship between detector

and object sizes for the minimum requirement to ensure
image reconstruction by defining a sampling ratio R, and
propose a method to stitch speckle patterns recorded
under a large image distance v to obtain a speckle pattern
with an equivalent large sampling ratio R∪ by exploiting

the dynamic feature of the scattering medium. In addition
to suppressing the background noise, it can simultane-
ously enhance the frequency-spectrum resolution for a bet-
ter image reconstruction. In this way we can reconstruct
the image of the object under a larger v with a cheap de-
tector. The lower threshold R ¼ 1 to reconstruct a com-
plete image is given based on the simulation, which, in
practice, would be a little larger than 1 due to the exist-
ence of noise. Our method can reduce the dependence on
hardware and expands the application scope of speckle au-
tocorrelation imaging. It has great prospects in many
practical applications such as navigation, remote sensing,
and undersea detection.
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