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The diagnosis of osteoporosis is eventually converted to the measurement of bone mineral density (BMD) in
clinical trials. Since our previous work had proved the ability of using photoacoustic spectral analysis (PASA)
to efficiently detect osteoporosis, in this contribution, we proposed a fully connected multi-layer deep neural
network combined with PASA to semi-quantify BMD values corresponding to varying degrees of bone loss
and to further evaluate the degree of osteoporosis. Experiments were carried out on swine femur heads, and
the performance of our proposed method is satisfying for future clinical screening.
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Osteoporosis[1] is a skeletal disease characterized by abnor-
mal microarchitectural arrangement of bone tissue as well
as a decrease in bone mass. It is responsible for increased
bone fragility and consequent high incidence of low-
trauma hip, spine, and other fractures[2]. The fracture risk
of patients with osteoporosis is up to 40% during their life-
time. From the perspective of patients, fractures may
bring a lot of inconvenience to life and severe symptoms
may even be life-threatening[3]. Moreover, viewed from a
social standpoint, osteoporosis has already become an
enormous public health problem, and the associated medi-
cal and socioeconomic costs have risen sharply[4] for the
acceleration of the aging process and the arrival of the
old-age society. Hence, timely diagnosis and effective
treatment are of great significance to ease patients’ suffer-
ing and reduce relevant costs.
The diagnosis methods can be generally divided into

two categories—radiography methods and ultrasound
methods[5]. Dual X-ray absorptiometry (DXA) is currently
the most widely used radiography technique to assess min-
eral content in specified sites or in the whole skeleton. It
can derive value of bone mineral density (BMD), which is
the worldwide accepted gold standard for clinical diagno-
sis of osteoporosis. However, it only explains 60%–80% of
bone strength, while other factors that also play impor-
tant roles in determining fracture risk are not taken into
account, such as bone microarchitecture, bone turnover
rate, micro-damage, and bone mineralization. In addition
to DXA, quantitative computed tomography (QCT)[6] is
also one representative radiography method that can be
available for BMD measurement of cortical or cancellous

bone discretely. Moreover, the value measured by this
method is three-dimensional volumetric BMD, which im-
proves the sensitivity and accuracy of the measurement
result. In comparison with DXA, a higher radiation expo-
sure and a more expensive expense make QCT not condu-
cive to clinical application. Non-ionizing and non-invasive
quantitative ultrasound (QUS) technology is a typical
representative of the ultrasound method. In both cross-
sectional and prospective researches[7–9], QUS seems to
be a predictor of osteoporotic fractures because its param-
eters are closely associated with the degree of bone loss.
However, QUS can only measure BMD at peripheral sites
such as the finger, wrist, and heel, and the measurement
result is not that precise.

Photoacoustic (PA) imaging, also known as thermo-
acoustic imaging, is a hybrid imaging modality combining
the advantage of both optics imaging and ultrasound im-
aging[10]. The attribute of high contrast derived from the
sensitive absorption of optics in different tissues, the fea-
tures of high spatial resolution, and great penetration
depth are superiorities of ultrasound. It is proved that
PA measurement possesses the unique capability of evalu-
ating tissue microscopic architecture information at ultra-
sonic resolution, so its application field has rapidly been
expanded to biomedicine[11–13]. Several researches aimed
at studying frequency domain analysis of the broadband
PA signals, also called PA spectral analysis (PASA), have
already been done in the past few years to validate its po-
tential ability to characterize bone microstructures[14–16]. In
our previous study[17], the efficiency of the PASA method
in osteoporosis assessment was proved by comparing the
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quantified parameter slope from the PASA and broad-
band ultrasound attenuation (BUA) from QUS among
different bone models. Both the simulation and ex-vivo
experiment results showed that osteoporotic bone corre-
sponded to a higher slope value, which meant the varia-
tion trend of bone loss was consistent with that of the
slope derived from the PA spectrum. However, the above
research still stayed in quantitative analysis and was not
able to give quantitative diagnosis for varying degrees of
osteoporosis. In practical terms, specific criteria about the
ranges of slope values for varying degrees of osteoporosis
were not formally defined and widely accepted. This time
we wanted to go one step further to realize a semi-
quantitative diagnosis for varying degrees of osteoporosis.
Considering that the standard for BMD has already been
well established and widely acknowledged, we put forward
an idea to combine PASA with the deep learning network,
where the BMD value was taken as the network output.
To verify the feasibility of the proposed semi-quantitative
method, we conducted ex-vivo experiments on swine
femur heads in this study.
The relationship between the PA spectrum and corre-

sponding BMD value is nonlinear, complicated, and diffi-
cult to be modeled or to be denoted by a mathematical
expression precisely. The deep learning method provides
one solution to fit the complex mapping relationship be-
tween network input and output with a high accuracy by
offering sophisticated nonlinear models. Therefore, the
neural network was introduced to this study. Specifically,
the fitting process can be divided into three parts: neural
network construction, network training, and network test-
ing. In the network construction stage, both the layer
number and layer node number can be customized by spe-
cific needs. In the process of training, the PA spectra and
corresponding BMD values in training set were fed into
the network as input and output, respectively. Then,
the deep network continuously renewed the weights and
bias in each layer through iteration to minimize the error
between network output and the ground truth of BMD
values until it achieved the presupposed precision. In
the testing process, by comparing the predicted BMD val-
ues of the PA spectra in the test set with actual ones, the
network performance could be evaluated, and the feasibil-
ity of the proposed method could be judged. In this study,
we chose relative error as the performance evalu-
ation index.
The N-layer network contains N−1 hidden layers and

one output layer, where the output of each node in the
previous layer acts as input of the next layer. What we
processed was a one-dimensional signal of length 125, so
a whole conjunction neural network, which meant that
neighboring layers were fully connected by weighting val-
ues instead of a convolutional neural network, was
adopted in this study.
Each layer node except the ones in the input layer

mapped the sum of linear transformation to one output
through the selected activation function. In our study,

tan-sigmoid and purlin were chosen as the activation func-
tions in the hidden layers and output layer, respectively.

To validate the idea that PA signals can contribute to
the realization of semi-quantitative evaluation of osteopo-
rosis, we performed ex-vivo experiments on swine femur
heads. As shown in the diagram of the experimental sys-
tem (Fig. 1), the specimen with an average thickness of
around 5 mm was put vertically between a Q-switched
neodymium-doped yttrium aluminum garnet (Nd:YAG)
pulse laser and an ultrasonic transducer. The laser whose
pulse width was about 8 ns was transmitted at a fixed
wavelength of 532 nm to irradiate one side of the speci-
men. Then, the ultrasonic waves derived from the PA ef-
fect were detected by a line focused ultrasonic transducer
(V310-SM, PANAMETRICS-NDT) put on the other side.
The center frequency and −6 dB bandwidth of the trans-
ducer are 5 MHz and 4.4 MHz, respectively. After being
amplified (SA-230F5, NF) and sampled (PCI-5101, NI)
at a sampling rate of 60 MHz, the complicated, raw PA
signals were acquired.

We prepared 30 swine specimen slices and collected two
signals per slice; each of the signals was acquired by the
laser’s irradiation to one or the other side of the specimen.
The corresponding BMD values were obtained by DXA.
After the first round of signal acquisition, the 30 swine sli-
ces were soaked in an ethylene diamine tetraacetic acid
(EDTA) solution (0.5 mol/L) for 24 h to imitate the proc-
ess of bone loss (Fig. 2). After fetching out and going
through the same acquisition process described above, an-
other 60 raw PA signals and corresponding BMD values
were obtained. Eventually, the number of raw signals
added up to 120.

After eliminating the low signal-to-noise ratio (SNR)
ones, the eventual number of PA signals used for building

(a)

(b)

Fig. 1. (a) Schematic diagram of the experimental setup. (b) The
image of actual experimental installation.
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data sets became 99; 87 of them were for the training set,
and the remaining 12 were for the test set. Through careful
observation and analysis of the time domain graph of PA
signals, we found there existed a redundant component.
After calculating the start and end points of the actual
desired part according to the distances between the trans-
ducer and specimen, the thickness of the specimen, and the
sound speed in the specimen, we cut the raw PA signals
into a length of 1000. Considering that the maximum fre-
quency of the PA signal is around 7 MHz, the sampling
rate of 15 MHz is adequate, so we sampled each signal into
four signals with a length of 250. This step was equivalent
to converting the sampling rate from 60 MHz to 15 MHz
and could function as the signal length reduction and data
augmentation at the same time. As a result, 348 samples
for the training set and 48 samples for the test set were
obtained. Besides, for signals in the training set, we went
on doing augmentation by adding Gaussian noise twice so
that each signal obtained another two signals, and the
samples for training were 1044 in total. Training of a net-
work was essentially a procedure to adjust the parameters
in it so as to make our model convergent. Considering the
huge scale of network parameters, a proportional amount
of samples were demanded. In order to make the network
get the best performance, data augmentation was taken
on the original dataset.
By means of Fourier transform, we got the signals in the

frequency domain and went further to cut the length from
250 to 125 for signal spectrum symmetry. Moreover, the
decrease in signal length is of benefit to the subsequent
network training.
The nodes in the input and output layers were decided

once the data sets were determined and were 125 and 1,
respectively, in our study. The vital factors that had an
effect on the performance of the neural network were
the number of hidden layers and nodes in each hidden
layer. The network could not possess the necessary capac-
ity to learn and process information if the network depth

(depending on the number of layers) or the number of
nodes in each hidden layer was too small. Conversely,
too large number would not only greatly increase the com-
plexity of the network structure that may make the learn-
ing speed slower, but also make the network be more prone
to causing problems such as gradient vanishing and over-
fitting. Eventually, a fully connected seven-layer network
was selected as the optimal one through a preliminary ex-
periment, and its specific structure is shown in Fig. 3. One
diagram of the network input is shown in Fig. 4.

The BMD values measured by DXA were distributed in
a range from 0.06 g∕cm2 to 0.22 g∕cm2. The comparison
results calculated in test set between the network

Fig. 2. Step of soaking swine slices into EDTA solution to imi-
tate the process of bone loss.

Fig. 3. Specific structure of adopted fully connected seven-layer
network, and the details of layer 1 and layer 2 are presented in
the right as an example.

(a) (b)

(c) (d)

Fig. 4. Each diagram corresponds to one stage of signal process-
ing. (a) The raw time domain PA signal. (b) Truncated time do-
main PA signal. (c) Time domain PA signal of further sampling
in (b); it retains the information of (b) but has a larger interval
between adjacent points (scatter diagrams are utilized to dis-
criminate them). (d) The result of (c) after Fourier transform
as an example illustration of the eventual normalized input of
the network.
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predicted values and actual ones are shown in Fig. 5.
The absolute errors ranged from 0.0011 g∕cm2 to
0.0344 g∕cm2, and the average value was 0.0133 g∕cm2.
The relative error that could give a more intuitive
cognition of the network performance for the actual BMD
values was small, and the mean relative error was
around 14%.
In this research, we verified the feasibility of utilizing a

multi-layer neural network to fit BMD values based on the
PA spectra. Compared with PASA method, which can
only reveal a variation trend of bone loss, our method
can realize semi-quantitative diagnosis for varying degrees
of osteoporosis. Raw PA signals were collected by experi-
ments conducted on swine femur heads. After various
processing, the obtained PA spectra were input into a fully
connected deep neural network to continuously update
the parameters until the network was stably convergent.
The eventual fitting results were satisfying, and our meth-
od’s potential application value in clinical screening was
proved by professional doctors. In our further study, a
large data set that includes more samples of each individ-
ual BMD value and covers a larger range of BMD values

will be built to improve the prediction accuracy and
comprehensiveness.
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Fig. 5. Diagram of actual BMD value and its corresponding ab-
solute error compared with the network fitting one.
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