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A deep convolutional neural network is employed to simultaneously measure the beam-pointing and phase
difference of sub-beams from a single far-field interference fringe for coherent beam combining systems. The
amplitudes of sub-beams in the measurement path are modulated in order to prevent measuring mistakes caused
by the symmetry of beam-pointing. This method is able to measure beam-pointing and phase difference with an
RMS accuracy of about 0.2 μrad and λ/250, respectively, in a two-beam coherent beam combining system.
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Ultra-intense and ultra-short lasers have made great
progress on the basis of chirped pulse amplification (CPA)
technology in recent years[1,2]. However, with the improve-
ment of laser power, material damage has become the
main factor limiting their development. As one of the most
promising techniques to further improve laser output
power, coherent beam combining (CBC) has attracted
the attention of many laser researchers[3–7]. Several ultra-
intense and ultra-short laser facilities have planned to em-
ploy the CBC technique, aiming to approach a 100 PW
level output[2]. The most important problem in CBC is
controlling the parameters that affect the combining effi-
ciency. These parameters can be classified into two catego-
ries: dynamic parameters (including beam-pointing and
phase difference) and static parameters (including group
delay dispersion and wavefront aberrations, etc.). The for-
mer vary quickly with the environment conditions and
need real-time adjustment, while the latter only depend
on the system itself and need no dynamic feedback. There-
fore, measuring beam-pointing and phase difference in real
time is a key problem for effective CBC.
To date, several implementations of CBC based on the

structure of ultra-intense and ultra-short lasers have been
reported[7–9]. The common methods such as Hansch–
Couillaud detectors[7], optical cross-correlators[8], and in-
terference fringe patterns[9,10] are utilized to measure the
phase difference in these systems. Nevertheless, the meth-
ods above can only measure the phase difference, and the
beam-pointing is neglected. The research shows that the
requirement of CBC on the beam-pointing stability is re-
lated to the beam diameter; the larger the beam diameter
is, the higher the requirement for beam-pointing stability
would be[11]. These experiments are all based on small
beam diameters in which the beam-pointing has little

effect on the combining efficiency. However, to achieve
an ultra-intense and ultra-short output by CBC in the PW
laser facility with a large beam diameter, beam-pointing is
a crucial factor. Therefore, a method that can simultane-
ously measure the beam-pointing and phase difference is
needed.

Here, we propose a method based on deep learning to
concurrently measure the beam-pointing and phase differ-
ence in CBC systems since the interference fringe pattern
of CBC contains the information of beam-pointing and
phase difference of sub-beams. We employ a deep convolu-
tional neural network (DCNN) trained by the amplitude
modulated far-field fringe patterns in our method. Due to
the considerable potential in image processing and com-
puter vision tasks, such as image classification[12] and seg-
mentation[13], the DCNN algorithm can distinguish the
tiny change of far-field fringe pattern caused by the
beam-pointing and phase difference. Moreover, the modu-
lated amplitudes of sub-beams in the measurement path
can prevent measuring mistakes caused by the symmetry
of beam-pointing. Generally speaking, the two factors are
measured separately in most CBC systems, while our
method can measure the beam-pointing and phase differ-
ence of a multi-beam CBC system in one fringe pattern,
which means that a lot of measurement elements can
be saved. In this Letter, we mainly validate and analyze
the method in a two-beam coherent combining system by
simulation.

CBC can be categorized as two schemes, in general. One
is a filled-aperture scheme commonly used in fiber lasers in
which beams are overlapped on beam combiners, while the
other is a tiled-aperture scheme in which beams are over-
lapped on the focal plane of the focusing elements.
The difference between these two schemes is that the
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sub-beams are spatially superposed on the near-field plane
in the former but separated with a gap in the latter. Here,
we only discuss the tiled-aperture scheme, which is appro-
priate for ultra-intense and ultra-short laser facilities. At
the same time, we consider the use of a continuous refer-
ence light for measurements, as adopted in Ref. [9]. Taking
Gaussian beams with a beam-pointing drift and phase dif-
ference in a near-field spatial coordinate, the nth beam dis-
tribution can be expressed as

Enðx; yÞ ¼ Anðx; yÞ exp½jkðx cos αn þ y cos βnÞ
þ jφnðx; yÞ þ jϕn�; (1)

where

Anðx; yÞ ¼ An exp
�
−
ðx − xnÞ2 þ ðy − ynÞ2

ðD∕2Þ2
�
: (2)

An, D, φnðx; yÞ, and ðxn; ynÞ represent, respectively, the
amplitude, beam diameter, wavefront phase, and position
on the near-field plane of the nth beam. αn, βn, ϕn are the
beam-pointing on the x axis and y axis, and the phase of
the nth beam, which vary quickly with the experiment
conditions. According to the scalar diffraction theory,
we can obtain the far-field intensity distribution after
coherent combining on the focal plane of the lens as

IΣðu; vÞ ∝
����
X

n

ZZ
Enðx; yÞ exp½−jkðxu þ yvÞ∕f �dxdy

����
2
:

(3)

In the tiled-aperture scheme, the CBC efficiency is com-
monly characterized by Strehl ratio, which is

SR ¼ IΣpeakðu; vÞP
n
I npeakðu; vÞ

; (4)

where IΣpeakðu; vÞ represents the peak intensity of the
coherent combined fringes, and I npeakðu; vÞ represents
the peak intensity on the focal plane of the nth sub-beam.
Previous studies[11] have shown that in order to achieve a

95% CBC efficiency, the phase difference between the sub-
beams should not exceed 0.22 rad, and the beam-pointing
of each beam should not exceed 4.8 μrad (spot diameter is
10 mm), when the influence of various factors is considered
separately for the CBC of N ðN ≫ 1Þ beams. It should be
noted that, with the increase of the spot diameter, the al-
lowable error of beam-pointing for the same CBC effi-
ciency would be smaller, which is basically inversely
proportional.
As a structure of deep learning, the deep convolutional

neural network is greatly effective in image processing. It
uses a local receptive field, weighs sharing and pooling
technology, and greatly reduces the training parameters
compared to the neural network. In order to exploit a
high-precision and reliable measurement method based

on DCNN, an excellent model should first be trained.
Increasing the depth or width of the model is the safest
way to get a good model, but it leads to the increasing
training cost. Thus, choosing an existing well-trained
model is a better choice.

In our approach, we employ Inception-v3 as a training
model to save training time and cost, which is an efficient
computing DCNN model developed by Google[14]. Accord-
ing to the method of transfer learning, we keep the param-
eters of the previous layers, remove the last layer of the
Inception-v3 model, and then retrain the last layer. The
input of DCNN is the simulated far-field interference pat-
terns, and the output is the beam-pointing and phase dif-
ference of each corresponding sub-beam.

A simple schematic diagram of a two-beam tiled-
aperture CBC system is shown in Fig. 1(a). In this scheme,
the beam-pointing and phase difference are commonly
measured in front of the focusing element by the measure-
ment system. We simulate the far-field interference pat-
terns in the measurement system that change with
different beam-pointing and phase according to Eq. (1).
In this process, a Gaussian transverse intensity distribu-
tion and a constant wavefront [φnðx; yÞ ¼ 0] of each
sub-beam are assumed. This assumption can significantly
simplify the computation, and the impact of the wavefront
will be analyzed later. For convenience, the phase value of
the first sub-beam ϕ1 is set as 0 as a reference, and the
phases of other channels are randomly taken in the range
of ½−π; π�. The values of beam-pointing of all sub-beams
½αn; βn� are randomly taken in the range of
½−20 μrad; 20 μrad�. Particularly, in order to prevent mea-
surement mistakes caused by the symmetry of beam-
pointing, we modulate the amplitude of each sub-beam,
which means taking different values for Anðx; yÞ. It is easy
to accomplish in experiment with an amplitude modula-
tion element in the measurement path, leaving no impact
on the main optical path, as shown in Fig. 1(a).

Fig. 1. (a) A simple schematic diagram of a two-beam tiled-
aperture CBC system and (b) the training procedure of DCNN.
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Further, a sampling window with a proper size is needed
to ensure the measurement range of beam-pointing and, at
the same time, a less amount of computation. In our case,
we choose the size of 100 × 100 to sample the far-field in-
terference patterns. In addition, the sampling images
should be extended to the size of 100 × 100 × 3, due to
the fact that the input layer of the Inception-v3 model
can only receive color images in RGB format. Finally, con-
sidering the accuracy of the model and the computation
amount, 20,000 far-field interference patterns and corre-
sponding labels are generated, of which 70% are used as
the training set, 30% as the validation set, and 500 addi-
tional samples are generated as the testing set.
The training process of the deep convolutional neural

network is shown in Fig. 1(b). It can be divided into
two stages, the forward propagation stage and the back
propagation stage. In the forward propagation stage,
the input layer receives the far-field interference patterns
and the output layer exports a list of prediction arrays
that will be compared with the corresponding labels to cal-
culate the loss of DCNN according to the loss function L.
In this process, multiple convolution layers and pooling
layers extract the input image features with multiple di-
mensions and compress them, while the activation layer
can introduce nonlinearity. In the back propagation stage,
the gradient of the neurons in all the hidden layers is cal-
culated by the loss, and a gradient descent algorithm is
used to update the weights of all the neurons. Through
the iteration of the two processes, the DCNN loss is mini-
mized to a desired value.
Loss function is the key factor for the training of DCNN,

and thus, choosing an appropriate loss function is signifi-
cant for high measurement accuracy. In our case, the mea-
surement accuracy of beam-pointing and phase difference
is of a different order of magnitude, and the loss function
can be defined as

L ¼ ‖ΘCNN − Θlabel‖2 þ γ2‖ΦCNN −Φlabel‖2; (5)

where Θ ¼ ½α1;β1;…; αn; βn�, Φ ¼ ½ϕ2;…;ϕn�, the unit of Θ
is μrad and of Φ is rad. The list ½α1β1;…; αn;βn;ϕ2;…;ϕn�
represents the beam-pointing and phase difference of each
example. The subscripts CNN and label represent the
values calculated by the deep convolutional neural net-
work and the values of the input labels, respectively. The
parameter γ is a normalization factor between beam-
pointing and phase difference, which has an important
impact on the training result.
In this Letter, the coherent beam combination of two

quasi-monochromatic beams (800 nm) is considered.
When simulating the far-field interference fringe, every
parameter in Eq. (4) can affect the shape of the far-field
pattern, besides the beam-pointing and phase difference.
Here, we choose one condition as an example. On the near-
field plane, the diameter of each beam is 10 mm, and the
gap between the two beams is 10 mm. The focal length is
1000 mm, and the resolution of the far-field record is 2 μm.

An area with 100 × 100 pixels is chosen as the sampling
window of the interference fringe.

According to the parameters above, we simulate several
far-field interference fringes under different beam-pointing
and phase difference values ½α1; β1; α2; β2;ϕ2�, as shown in
Fig. 2. It indicates that the beam-pointing and phase dif-
ference make different contributions to the shape of the
far-field interference fringe. Beam-pointing separates the
fringe and shifts the spot center, while the phase difference
moves the fringe series. Thus, the DCNN can identify
these two factors, respectively, taking them as two fea-
tures of the far-field images. However, due to the sym-
metry of beam-pointing, we cannot distinguish which
beam has a beam-pointing drift when the two beams
are basically the same (A2 ¼ A1), as shown in Figs. 3(a)
and 3(b). The two far-field patterns are the same when the
same beam-pointing drift occurs in either beam. Such a
problem can be solved by modulating the amplitudes of
different beams, for instance, the result is different when
A2 ¼ 2A1, as shown in Figs. 3(c) and 3(d). Therefore, the
amplitude modulation is a pre-requisite point in our
method to code the sub-beams in the measurement
system.

Fig. 2. Far-field distribution under different beam-pointing
and phase differences: (a) ½0; 0; 0; 0; 0�, (b) ½20 μrad; 20 μrad;
−20 μrad;−20 μrad; 0�, and (c) ½0; 0; 0; 0; π�.

Fig. 3. Far-field distribution under different amplitude modula-
tion ratios: (a) A2 ¼ A1, ½20 μrad; 20 μrad; 0; 0; 0�, (b) A2 ¼ A1,
½0; 0; 20 μrad; 20 μrad; 0�, (c) A2 ¼ 2A1, ½20 μrad; 20 μrad;
0; 0; 0�, and (d) A2 ¼ 2A1, ½0; 0; 20 μrad; 20 μrad; 0�.
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In the training process, the RMSPropOptimizer algo-
rithm is employed, and the value of γ in the loss function
is 10. In this case, 20,000 simulated far-field interference
patterns are fed to our neural network model to obtain
the training error curve, as shown in Fig. 4(a). It is found
that the training error decreases with the increase of train-
ing epochs, while the validation error oscillates or even be-
comes larger. Thus, we use the early stopping method to
save the computation time and to also prevent overfitting
of DCNN. Here, we set the rule that when the value of the
loss function L falls to less than 0.1 in 30 epochs, the train-
ing process stops, and the best network parameters are
achieved. Finally, the testing set is put into the trained
DCNN, the beam-pointing and phase difference are mea-
sured by this optimized network, and the absolute value of
the measurement errors can be illustrated by a scatter
diagram, as shown in Fig. 4(b).
The RMS errors between the predictions of the network

and label values of the 500 testing samples are
½0.192 μrad;0.181 μrad;0.182 μrad;0.193 μrad;0.0243 rad�.
We choose the maximum value from the four beam-
pointing errors (0.192, 0.181, 0.182, 0.193) to evaluate
our beam-pointing measurement accuracy in this Letter.
Thus, in this case, our DCNN can measure beam-pointing
with an accuracy of 0.193 μrad and phase difference with
an accuracy of 0.0243 rad, which completely meet the
measurement requirements in the CBC system.
There are several factors that have influences on the

measurement accuracy in the DCNN method. It is men-
tioned that the value of γ has an impact on the training
result, because the loss function plays a decisive role in
the training process. We choose four different values to
compare the measuring errors, and the results are illus-
trated in Fig. 5 in which the percentage of each error level
in testing set is shown by a bar diagram. We can find that
the phase difference error decreases when the value of γ
increases in Fig. 5(b), while the beam-pointing error in-
creases when the value is too high in Fig. 5(a). The results
show that we can achieve a balance between these two er-
rors when the value of γ is around 10. γ is the weight of the
phase difference in the loss function and should be well
chosen to balance the scale of the beam-pointing and
phase difference. This skill, called normalization, is often
used in the optimization process of neural networks to

prevent the vanishing gradient problem and overfitting
problem.

Since amplitude modulation is a key step in our method,
its effect on the training results should be analyzed. First,
the modulation ratio R ¼ A2∕A1 is set as 1. The training
procedure terminates in a short time with a divergence re-
sult, which proves the indiscernibility of the far-field fringe
patterns in Figs. 3(a) and 3(b). Then, we also choose four
different values of R, and the results are illustrated in
Fig. 6. It shows that both beam-pointing and phase differ-
ence have the minimum error when the value of R is
around 2. We conclude that when the modulation ratio
is close to 1, the difference in the fringe pattern is too small
to distinguish, while when it is too large, the contrast of
the fringe pattern decreases significantly, making the mea-
surement accuracy decline. Thus, the value of R should be
moderate.

Through the simulation of the CBC theory, we know
that the larger the beam diameter is, the smaller the
beam-pointing drift is needed for identical combining
efficiency. That is, the network is more sensitive to the
beam-pointing when the beam diameter is larger. Here,
we choose four beam diameter values and change the
corresponding focal lengths to keep the value of the F
number (F ¼ f∕D) and the far-field spot size unchanged.
Training the DCNN separately in these conditions, the
testing results are illustrated in Fig. 7, where the corre-
sponding beam-pointing errors and phase difference errors
are ½0.294 μrad; 0.0406 rad�, ½0.193 μrad; 0.0243 rad�,
½0.132 μrad; 0.0352 rad�, and ½0.129 μrad; 0.0385 rad�,
respectively. The results indicate that the beam-pointing

Fig. 4. (a) Training and validation errors across training epochs.
(b) The testing set error of 500 samples; the red circle represents
the beam-pointing error, and the blue sign represents the phase
difference error.

Fig. 5. Testing set error distribution, in the cases of γ ¼ 1, γ ¼ 3,
γ ¼ 10, and γ ¼ 30: (a) the beam-pointing error and (b) the
phase difference error.

Fig. 6. Testing set error distribution, in the cases of R ¼ 1.2,
R ¼ 1.5, R ¼ 2, and R ¼ 4: (a) the beam-pointing error and
(b) the phase difference error.
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measurement accuracy will be higher with the increase of
the beam diameter, while the improvement is limited
when the diameter is large enough. This may be due to
the limited pixel accuracy and bit accuracy.
When applying the method to the CBC experiment, the

training set should be generated from the experimental
data in which the wavefront aberration exists. Therefore,
we should also discuss the impact of wavefront aberration
on the measurement accuracy. Several testing sets with
wavefront aberration of different peak-valley levels are
generated and predicted by the previous trained DCNN.
It is found that the beam-pointing error increases rapidly
with the increasing testing set wavefront aberration, as
shown in Table 1. The results indicate that the generali-
zation performance will decay when the wavefront aberra-
tion is too large. We also retrain our network using a new
training set with a larger wavefront aberration. The new
network shows a better performance in which the differ-
ence between wavefront aberrations of the training set
and testing set plays a major role. This problem can be
solved by collecting training sets and testing sets in the
same experiment conditions. In addition, to obtain a good
performance of the measurement DCNN, we need to

measure and reduce the wavefront aberration in the
CBC experiment.

In conclusion, we present a far-field measuring method
for CBC systems based on amplitude modulation and deep
learning. This method can simultaneously measure the
beam-pointing and phase difference of each sub-beam in
a single far-field interference fringe pattern. A DCNN
based on the amplitude modulated fringe patterns is
trained, whose beam-pointing measurement RMS accu-
racy is about 0.2 μrad and the phase difference is about
λ∕250. The factors affecting the training result of the
DCNN and the measurement accuracy, such as the nor-
malization factor, amplitude modulation ratio, beam
diameter, and wavefront aberration, are analyzed in
detail. In addition, the method can also be applied to
multi-beam coherent combining systems. This method
has a potential application to measuring the beam-
pointing and phase difference in ultra-intense and ultra-
short CBC laser systems. We will employ the method in
our next work to achieve the feedback from the beam-
pointing and phase difference for CBC in experiment.
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Fig. 7. Testing set error distribution, in the cases of D ¼ 4 mm,
D ¼ 10 mm, D ¼ 25 mm, and D ¼ 50 mm: (a) the beam-
pointing error and (b) the phase difference error.

Table 1. Measurement Errors Under Different
Wavefront Aberrations

Training Set
Wavefront
Aberration
(rad)

Testing Set
Wavefront
Aberration

(rad)

Beam-
pointing
Error
(μrad)

Phase
Difference
Error
(rad)

0

0 0.193 0.0243

π/4 0.700 0.0308

π/2 1.530 0.0615

π/4

0 0.346 0.0484

π/4 0.423 0.0444

π/2 0.983 0.0684
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