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A type of scalable self-imaging capable of variable magnification or minification of periodic objects is demon-
strated in the focal plane of a lens illuminated by a point source. The theory and the experimental results show
that the self-imaging phenomenon can also be realized in the focal plane of a lens regardless of whether the
distances satisfy the lens formula or not. The particular property of this scalable self-imaging effect is that
the images in the focal plane can be controlled with different scaling factors only when the distances between
the point source and the periodic object satisfy a certain condition. This discovery should open a new field of
diffraction imaging and new application opportunities in precision measurement.
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The self-imaging phenomenon of a periodic object, also
known as the Talbot effect, is a fascinating physical effect
first discovered by H. F. Talbot in 1836[1]. Since the dis-
covery of this effect, it has been developed in many fields,
including plasmonics[2], atom optics[3,4], nonlinear optics[5],
exciton-polaritons[6], electronics[7], and transformation
optics[8]. The Talbot effect capability of creating an exact
replica of a given periodic object has been demonstrated
and utilized in many domains, such as array illumina-
tors[9,10], wavefront sensors[11], telecommunication[12–14],
lithography[15–17], and array focusing[18]. Moreover, other
breakthroughs of the Talbot effect have also been reported
in the Airy Talbot effect[19], orbital angular momentum[20],
prime number decomposition[21], bidimensional Talbot ef-
fect[22], temporal Talbot effect[23,24], angular Talbot effect[25],
etc. The conventional Talbot effect (illuminated by a
plane wave) principally focuses on the physics phenome-
non in free space, i.e., when a periodic object is illuminated
by a monochromatic plane wave, the diffraction images of
the original object can be reproduced without using a lens.
So, this imaging without a lens in free space is also called
self-imaging. Exact images with the same period and the
structure of the original object can be obtained at specific
propagation distances, which are integer multiples of the
so-called Talbot distance, while self-images with a period
divided by an integer factor can be achieved at a fraction
of the Talbot distance[26]. Recently, a bidimensional self-
imaging with full independent period control was re-
ported[22]. It is shown that the self-image period along each
of the two dimensions can be changed by any desired
integer or fractional factor. However, although the period
of the original periodic object can be controlled by the
fractional Talbot effect or the bidimensional Talbot effect,
the size of the periodic object is hard to change. Hence, the
self-imaging with a scalable size of the original periodic ob-
ject is difficult to realize through the conventional Talbot
effect in free space. In this Letter, we report that a scalable
Talbot effect with a controllable size and period can be

realized in the focal plane of a lens. Generally, the exact
image of an object cannot be produced in the focal plane of
a lens because it does not satisfy the lens formula in geo-
metrical optics. However, through the theoretical analysis
and experiment we discover that if a periodic object is
illuminated by a suitable point source, the images of the
object can be achieved in the focal plane of the lens.
Moreover, the images can be controlled with various scal-
ing factors.

We begin with the theoretical analysis of a periodic ob-
ject in the focal plane of a lens. As shown in Fig. 1, suppose
that a two dimensional (2D) periodic array object is illu-
minated by a monochromatic diverging spherical wave of
unit amplitude. The distribution of the complex field
immediately behind the 2D periodic object can be
expressed as

U 0ðr; d0Þ ¼ tðrÞψðr; d0Þ: (1)

For simplicity, we define a quadratic-phase function
ψðr; zÞ ¼ exp½jπr2∕ðλzÞ�, where r ¼ ðx2 þ y2Þ1∕2, λ is the
wavelength of the incident beam, and z is a parameter de-
scribing the distance. In Eq. (1), the diverging spherical
wave can be written as ψðr; d0Þ ¼ exp½jπr2∕ðλd0Þ� in the
paraxial approximation, where d0 is the distance of the

Fig. 1. Schematic of the scalable Talbot effect in the focal plane
of a lens.
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point source from the periodic object. Note that we
entirely neglect the constant term and the finite extent
of the object aperture for brevity in this Letter. tðrÞ is
the transmittance function of the 2D array object, which
can be expressed as the convolution of a lattice function
lðr;RnÞ with a complex amplitude u0ðrÞ of one unit of
the periodic array object:

tðrÞ ¼ u0ðrÞ ⊗ lðr;RnÞ; (2)

where ⊗ is the symbol for convolution. The lattice func-
tion lðr;RnÞ is an array of a 2D periodic delta function
determined by the lattice vector Rn ¼ n1a1 þ n2a2, where
n1 and n2 are the lattice index and (a1, a2) are the basic
vectors of the lattice[27]. Then, using the Fresnel diffraction
to account for propagation over a distance d1, the complex
field can be stated as

U 1ðr1; d1Þ ¼ U 0ðr1; d0Þ ⊗ ψðr1; d1Þ; (3)

where ψðr1; d1Þ ¼ exp½jπr21∕ðλd1Þ� is the convolution ker-
nel of the Fresnel diffraction, and again the constant term
is dropped. After passing through the lens, the transmit-
ted field distribution becomes

Uf ðr1; f Þ ¼ U 1ðr1; d1Þψðr1;−f Þ; (4)

where ψðr1;−f Þ ¼ exp½−jπr21∕ðλf Þ� is the phase transfor-
mation of the lens. Next, after propagating over distance
f , the distribution of the field at the focal plane of the lens
can be expressed as

U 2ðr2; f Þ ¼ Uf ðr1; f Þ ⊗ ψðr2; f Þ: (5)

Further, again neglecting a pure phase factor, the focal-
plane amplitude distribution can be rewritten as

U 2ðr2; f Þ ¼ C0FftðrÞ× ψðr; d0Þg; (6)

where Ffg signifies the Fourier transform operation, and
C0 ¼ ψ ½r2; f 2∕ðf − d1Þ� is a quadratic-phase exponential
factor. Thus, we see that the complex amplitude distribu-
tion in the focal plane of the lens is the Fourier transform of
the product of the transmitted field of the object and the
diverging spherical wave of the point source. Applying
the similarity theorem of the delta function andmathemati-
cal manipulation, the Eq. (6) can be further written as

U 2ðr2; f Þ ¼ C1tðr2∕MÞ ⊗ ψðr2∕M ; d0Þ; (7)

where the quadratic-phase exponential factor C1 ¼
ψ ½r2; f 2∕ðf − d1 − d0Þ� and M ¼ f ∕d0 is a scaling factor.
According to the transfer function approach of the Fresnel
diffraction calculation, the diffraction field distribution
of Eq. (7) in the focal plane of the lens can be rewrit-
ten as

U 2ðr2; f Þ ¼ C1F−1fTðMρÞ× expð−jπM 2λd0ρ2Þg; (8)

where F−1fg represents the inverse Fourier transform
operation and TðMρÞ is the Fourier transform of the 2D
periodic object, which satisfies the relationship

TðMρÞ ¼ Fftðr∕MÞg ¼ 1
S
G0ðMρÞlðρ;Kh∕MÞ; (9)

where the coefficient S is the area of the unit defined by the
basic vector. ρ is the frequency in the frequency spectrum
domain. Kh ¼ m1b1 þm2b2 is the reciprocal-lattice vector,
wherem1 andm2 are the lattice indices and b1 and b2 are the
reciprocal basic vectors of the lattice. It is only at the end-
points of the vectors Kh that the values of the reciprocal-
lattice function of TðMρÞ are not equal to zero. Thus, from
Eq. (8), we can see that if the distance d0 of the point source
from the object satisfies the condition of

d0 ¼ 2m∕ðλjKhj2Þ; (10)

where m is a positive integer, then the complex amplitude
distribution in the focal plane of the lens can be rewritten as

U 2ðr2; f Þ ¼ C1F−1fTðMρÞ× expð−j2πmÞg
¼ C1tðr∕MÞ: (11)

Finally, from Eq. (11), we can see that the complex
amplitude distribution of the field in the focal plane of
the lens is in proportion to the array object, up to a
quadratic-phase exponential factor. Since it is usually the
intensity of the image that is interesting, the quadratic
phase factor C1 can be omitted. That is an interesting re-
sult in the focal plane of a lens. It is known that it is impos-
sible to obtain an exact image of a nonperiodic object in
the focal plane of a lens because the object plane and the
image plane do not conform to the imaging law of lenses.
However, in this Letter, we find that if the object is an
array of periodic distribution and illuminated by a point
source, scaling images of the periodic object can be
achieved in the focal plane of a lens even if the distance
does not satisfy the object-image relationship of the lens.
Thus, a similar Talbot effect with a scalable size of the
original object can be realized as long as the distance
satisfies Eq. (10). Consequently, a similar self-imaging
phenomenon or Talbot effect can be achieved in the per-
manent focal plane of the lens, provided the distance of the
point source satisfies the condition of Eq. (10). However,
the structure of the image in the focal plane of the lens is
different from the original array object. The period and
the width of the units change with the scaling factor
M , which is determined by the distance d0 and focal length
f . Therefore, through changing the distance of the point
source from the object or the focal length of the lens, a
magnified or minified image can be achieved. In this
Letter, we call this type of self-imaging phenomenon
the scalable Talbot effect.

Nevertheless, to achieve the scalable Talbot effect in the
focal plane of the lens, it is necessary to enable the distance
d0 to satisfy the condition of Eq. (10). According to the
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reciprocal theory of the lattice function[27], the distance
from the point source to object can be given by d0 ¼ mzT ,
where zT is the Talbot distance. It is known that the
Talbot distance of a one dimensional (1D) optical grating
is zT ¼ Δ2∕λ, while for a 2D hexagonal array object the
Talbot distance is zT ¼ 3Δ2∕ð2λÞ, where Δ is the period
of the array object[26,28]. For example, suppose that a 1D
grating is illuminated by a point source with the wave-
length of λ ¼ 0.633 μm. The period of the grating is
Δ ¼ 200 μm, and the width of the slits is w ¼ 100 μm.
Using a fast calculation algorithm of the Fresnel diffrac-
tion[29], we can numerically simulate the diffraction pat-
terns of the array object in the focal plane of the lens.
Figure 2(a) shows the simulated diffraction images of
the grating in the focal plane of a lens. For simplicity,
we assume the focal length f ¼ zT in the simulation. It
is shown that an exact image of the original grating is
given whenm ¼ 1, i.e., the distance d0 ¼ zT , and the scal-
ing factor M ¼ 1. Hence, under that condition ðM ¼ 1Þ,
the exact Talbot image of the original object can be
formed, which is similar to that achieved in the free-space
diffraction.
From Fig. 2(a), we can see that some similar self-

imaging phenomena can also be realized at other distan-
ces. When the distance d0 is not equal to the focal length f
of the lens, the diffraction images are transversally mag-
nified or compressed versions of the original object. The
period and slit-width of the images in the focal plane will
be changed with various distances of the point source from
the object. Since d0 is proportional to the integer m, we
can see that the period and slit-width of the diffraction
images decrease with the increase of m. Meanwhile, the

images in the focal plane are different from the traditional
fractional Talbot image in the Fresnel diffraction with a
plane wave. As shown in Fig. 2(a), the slit-width and
the period of the grating images are also changed.
Figure 2(b) shows the curves of the period and slit-width
as a function ofm. It is shown that the period and slit-width
of the diffraction images are inversely proportional to m.

These simulated results are consistent with the above
theoretical analysis. The scaling factor M is inversely pro-
portional to the distance d0, while it is proportional to the
focal length f . Figure 2(c) shows the simulated diffraction
images of the grating with different f . In this simulation,
the distance d0 is a constant that equals 2zT . Figure 2(d)
shows the changing curves of the period and slit-width as a
function of the focal length f . It is clear to see that the
period and slit-width of the diffraction images of the gra-
ting have a linear relationship with f . It should be noted
that this distance d1 between the lens and the periodic ob-
ject will not affect the self-imaging in the focal plane of the
lens. From Eq. (11), we can see that the distance d1 just
affects the quadratic-phase exponential factor of C1. In
addition, if the distances of d0, d1, and f satisfy a particu-
lar relationship, this quadratic-phase exponential factor
can be canceled. Then this relationship may be helpful
in the application of phase measurement.

Figure 3 shows the schematic diagram of the experimen-
tal setup. A He–Ne laser (Thorlabs, HRS015B) with wave-
length λ ¼ 633 nm is used. The beam passes through a
pinhole (diameter 10 μm) spatial filter system (Thorlabs,
KT310) to produce a pure point-like light source. The en-
tire pinhole spatial filter system is placed on a motorized
linear translation stage (Thorlabs, LTS300), which ena-
bles precise tuning of the distance between the point
source and the array object (a Cr film on glass fabricated
by photoetching). Then, after propagation over a distance
behind the array object, the diffraction field is incident
on a lens. Thus, the focused field after the lens is recorded
by a CCD camera (Daheng Imaging, DH-HV3151UC)
with the pixel size of 3.2 μm. This experimental setup
allows us to record the diffraction patterns of the array
object in the focal plane of the lens. The array object
is a 1D grating with a period of Δ ¼ 200 μm and a slit-
width of w ¼ 100 μm. So, the Talbot distance is
zT ¼ Δ2∕λ ¼ 63.2 mm.

Figure 4 shows the experimental results with various
distances and the focal lengths of the lens. Figure 4(a)
shows the patterns recorded through the CCD camera
with the distance d0 changed from zT up to 4zT ,

Fig. 2. Simulated diffraction patterns in the focal plane. (a) The
intensity distribution of the grating with differentm, and (b) the
corresponding curves of the period and slit-width as a function of
m. Assume the focal length of the lens f ¼ zT , where zT ¼ Δ2∕λ
is the Talbot distance, with simulation parameters λ¼ 0.633 μm,
Δ ¼ 200 μm. (c) The diffraction images of the grating with dif-
ferent focal lengths f , and (d) the corresponding curves of the
period and slit-width as a function of the focal length f . Fig. 3. Schematic diagram of the experimental setup.
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confirming the observation of the predicted scalable self-
imaging effects of the diffracted waves in the focal plane of
the lens. Figure 4(b) shows the experimental results with
the various focal lengths of the lens when the distance be-
tween the point source and the 1D grating is a constant of
d0 ¼ 2zT . We can see that the slit-width and the period of
the grating images are also changed with the various focal
lengths f .
Figures 5(a) and 5(b) show the corresponding 1D curves

of the centerlines shown in Figure 4. Figures 5(c) and 5(d)
show the changing curves of the period and slit-width as a
function of m and the focal length f . It is clear to see that
the period and the slit-width of the diffraction images of
the grating are inversely proportional to m while they are
proportional to f , which is entirely consistent with the
theoretical prediction. That is to say, a magnified image

can be achieved when the scaling factor M > 1, while a
minified image can be obtained when the scaling factor
M < 1. Therefore, through changing the scaling factor
M , i.e., changing d0 or f , the scalable Talbot effect can
be realized in the focal plane of a lens.

In addition, the scalable Talbot effect for other 2D array
objects can also be achieved. Figure 6 shows the experi-
mental results of a hexagonal array object with period
Δ ¼ 70 μm, and the focal length of the lens used in the
experiment is 300 mm. Figure 6(a) shows the image
recorded by the CCD when the distance d0 ¼ 10zT , while
Fig. 6(b) shows the recorded image when d0 ¼ 20zT . It is
shown that the period and the size of the hexagon are re-
duced by half when the distance d0 changed from 10zT to
20zT . These results confirm that the scalable images of
various array objects can be produced in the
focal plane of a lens, regardless of whether the lens law
is satisfied, in agreement with our theoretical predictions.
Also, as predicted, when d0 satisfies the condition of
Eq. (10), the scaling self-imaging of the array object
can be achieved.

In summary, we have demonstrated a scalable Talbot
effect in the focal plane of a lens. The first theoretical
prediction and experimental observation of scaling self-
imaging effects are given. Some scaling images with vari-
ous magnified or minified factors can be realized when the
periodic array objects are illuminated by a suitable spheri-
cal wavefront. This kind of self-imaging phenomenon in
the focal plane of a lens should open the path for novel
physics phenomena and new applications in the field of
imaging and measurement. It should be noted that the
scalable Talbot effect can also be achieved when m is a
fraction. However, this scalable Talbot effect with fraction
m is different from the conventional fractional Talbot ef-
fect, which will be discussed in future research. Moreover,
the new optical illuminating source[30,31] can be utilized to
enhance the optical imaging efficiency and resolution in
the application.
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(a) various distances d0 when the focal length f ¼ 75 mm and
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lines shown in Figure 4. (c) and (d) are the period and slit-width
as a function of the distance parameter m and the focal length f .

Fig. 6. Experimental results recorded by the CCD with a hex-
agonal array object with period Δ ¼ 70 μm and the focal length
of the lens is 300 mm. (a) d0 ¼ 10zT , (b) d0 ¼ 20zT .
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