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We demonstrate a photonic architecture to enable the separation of ultra-wideband signals. The architecture
consists of a channel-interleaved photonic analog-to-digital converter (PADC) and a dilated fully convolutional
network (DFCN). The aim of the PADC is to perform ultra-wideband signal acquisition, which introduces the
mixing of signals between different frequency bands. To alleviate the interference among wideband signals, the
DFCN is applied to reconstruct the waveform of the target signal from the ultra-wideband mixed signals in
the time domain. The channel-interleaved PADC provides a wide spectrum reception capability. Relying on
the DFCN reconstruction algorithm, the ultra-wideband signals, which are originally mixed up, are effectively
separated. Additionally, experimental results show that the DFCN reconstruction algorithm improves the
average bit error rate by nearly three orders of magnitude compared with that without the algorithm.
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A wide operating frequency range and sufficient instanta-
neous receiving bandwidth are indispensable for signal re-
connaissance, which is one of the key technologies of
electronic warfare (EW)[1,2]. Conventional reconnaissance
equipment is faced with a great challenge with the devel-
opment of modern electronic information technology. The
introduction of photonic technology provides a new idea
for the research and development of reconnaissance equip-
ment. A photonic analog-to-digital converter (PADC)
combines the advantages of the optical front end, namely
high speed, low jitter, and wide bandwidth, with the char-
acteristic of high accuracy of the electronic back end.
Thus, it improves system performance and provides an
ideal solution for the next-generation information sys-
tems[3–8]. Especially in recent years, channel-interleaved
PADCs have made tremendous breakthroughs[9–12].
PADC-based systems are of wide receiving bandwidth,

which also brings about issues such as more complexity in
received signals and severe interference among signals. In
this sense, the difficulty of analyzing signals increases, es-
pecially when the spectrum of signals is aliased. In order to
avoid the influence of interference between signals and ac-
curately extract the signal that we are interested in from
the mixture containing multiple signals, the problem is
regarded as a single channel blind source separation
(SCBSS)[13], of which the purpose is to restore the original
source signal from one sensor through various means. To
effectively achieve SCBSS, different methods based on
hand-crafted algorithms are reported[14–16]. Recently, deep
learning[17] has achieved outstanding performance in

medical imaging, communication, speech enhancement,
and image processing[18–21]. By introducing deep learning
technology into the traditional processing systems, supe-
rior performance is expected and demonstrated, such as
combining optical microscopy with a generative adversa-
rial network (GAN) to achieve super-resolution under a
large field of view[22], combining microscope hardware with
deep learning to offer accurate image classification[23], and
using a residual-on-residual learning model to realize lin-
earization and mismatch compensation in PADC[10].

In this Letter, a channel-interleaved PADC is seam-
lessly combined with a dilated fully convolutional network
(DFCN), which are two essential parts for ultra-wideband
signals acquisition. The bandwidth advantage of the
PADC is exploited to obtain ultra-wideband signals with
a wide operating frequency range and sufficient instanta-
neous receiving bandwidth [tens of gigahertz (GHz)]. The
DFCN successfully separates the target signal from the
mixture with high fidelity, lowering the interference
among aliased signals. To demonstrate the feasibility of
the proposal, several categories of microwave signals are
experimentally conducted and separated. Additionally,
we implement the signal separation for digitally modu-
lated signals. Experimental results show that our scheme
can accurately separate the digital signal under the inter-
ference of microwave signals. The average bit error rate
(BER) has been improved by about three orders of mag-
nitude after separation of the digital signal.

Figure 1 shows the model for ultra-wideband signals ac-
quisition and separation, which is mainly composed of two
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parts: a channel-interleaved PADC and a back-end arti-
ficial neural network, namely the DFCN. The channel-
interleaved PADC converts wideband analog signals into
digital signals that can be flexibly processed. The wide-
band signal is considered as a combination of the target
signal and the interference signals. The DFCN separates
the target signal from the mixture. As shown in Fig. 1, the
analog signal in the channel-interleaved PADC is sampled
at a sampling rate of f s by electronic-optical (E/O) modu-
lation. Then, the pulse train is demultiplexed into multiple
parallel channels via a demultiplexer (DEMUX). Finally,
the demultiplexed optical pulse trains are photoelectri-
cally converted by a photodetector (PD) array and
digitized by an electronic analog-to-digital converter
(EADC) array.
The operations of DFCN are shown in Fig. 1. The

DFCN is an encoder–decoder neural network based on
fully convolutional networks (FCNs)[24]. The encoder mod-
ule consists of a series of cascaded convolution blocks, and
each block contains two convolution layers, a max-pooling
layer, and a dilated convolution layer. Among them, the
convolution layer is used to extract the features of the tar-
get signal from the mixed input. The pooling layer retains
the main features while reducing parameters and calcula-
tions, thus avoiding overfitting and improving the gener-
alization ability of the model. Through conventional
convolutional operations, the receptive field is severely
limited. Since the wideband microwave signals are typi-
cally holistic and of high dimensionality, small receptive
field fails to cover the complete information of the signals.
To broaden the receptive field and further fuse the fea-
tures of the previous stage, dilated convolution operator
(also referred to as convolution with a dilated filter, which
can apply the same filter in different ranges with different
dilation factors) is adopted rather than expanding the size
of convolution kernel and the number of convolution

layers, which increases the calculation of the network
and causes a tendency of overfitting[25]. Each convolution
layer is followed by batch normalization (BN)[26], which
can accelerate the training of deep neural networks and
regularize the model. As previously done in encoding
networks, the decoder consists of several cascaded decon-
volution blocks, and each block contains three deconvolu-
tion layers followed by BN. The resultant feature maps of
the encoder are the input of the decoder. The resolution of
the feature map is quite low after a series of convolution
operations. It is necessary to restore the original signal size
by upsampling. Here, the cascaded deconvolution blocks
are used for upsampling. The sizes of the feature maps
gradually increase as the dimensions decrease. Finally,
the time-domain waveform of the target signal is recon-
structed. The detail of the DFCN we implemented is de-
scribed in Table 1. The activation function of each layer is
‘tanh,’ which is used to increase the nonlinearity of the
neural network model and enhance the expression ability
of the neural network model.

In order to demonstrate the feasibility of the proposal,
two individual experiments based on the same setup are
implemented, as shown in Fig. 2. We first separate several
commonmicrowave signals. To train the network, it is nec-
essary to prepare a large dataset comprising pairs of mixed
signals and the original wideband signal. We adopt a
channel-interleavedPADC to achievewidebandmixed sig-
nals acquisition, as shown in Fig. 2. An actively mode-
locked laser (AMLL) (Calmar PSL-10-TT) is used to
generate an optical sampling pulse. Then, the optical sam-
pling pulse passes through a Mach–Zehnder modulator
(MZM,Optilab IMC-1550-20-PM; bandwidth, 20GHz) and
is modulated by the wideband mixed signal. The modulated
optical pulse is amplified by a customized erbium-doped fi-
ber amplifier (EDFA; gain, 15 dB). A dual-output MZM
(DOMZM, EOSpace AX-1x2-0MSS-20) is used as an

Fig. 1. Schematic of proposed ultra-wideband signal acquisition architecture. The architecture is mainly composed of two parts: a
channel-interleaved photonic analog-to-digital converter (PADC) and a dilated fully convolutional network (DFCN). E/O, electro-
optical modulation; DEMUX, demultiplexer; O/E, optical-electronic conversion; EADC, electronic analog-to-digital converter;
CONV, convolution; BN, batch normalization; DECONV, deconvolution.
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optical switch, which demultiplexes the optical pulse into
two channels. An optical tunable delay line (OTDL, Gen-
eral Photonics VDL-001-15-33; delay range, 0–330 ps)
guarantees theDOMZMcanaccurately achieve the switch-
ing effect. The demultiplexed signals are converted into
electrical signal by two PDs with a bandwidth of 12 GHz
(Discovery Semiconductors DSC50S) and quantized by a
real-time oscilloscope (OSC, Keysight MSO804A). A
microwave generator (MG, Keysight E8257D) provides
a microwave signal of 20 GHz, which is divided into two
channels by a power splitter (Talent Microwave
RS2W04260-S; frequency range, 0.4–26 GHz). One chan-
nel is used to drive theAMLL, and consequently the optical
sampling rate is 20 GHz. The other channel transferred to
10 GHz by a frequency divider (FD, RF Bay FPS-2-20) is

used as driving signal for the optical switch. Furthermore,
we use the 10 MHz reference signal from the MG as the
reference clock for the OSC to ensure consistency. An ar-
bitrary waveform generator (AWG, Keysight M8152A)
is used to generate 5000widebandmixed signals containing
multiple types: continuous wave (CW), linear frequency
modulated (LFM), non-LFM (NLFM), and Costas and
Barker-13 codes. The carrier frequency, bandwidth, and
normalized amplitude of each signal are randomly gener-
ated within 8.2–8.7 GHz, 0.3–1.2 GHz, and 0.5–1, respec-
tively. Each sample in our training set is generated from the
combination of multiple randomly selected microwave sig-
nals. These wideband mixed signals from the AWG are
transmitted in pulses by a transmitting antenna (TA1,
A-INFO LB-90-20-C-SF; frequency range, 8.2–12.4 GHz),
received by a receiving antenna (RA, A-INFO LB-20180-
SF; frequency range, 2–18GHz), and converted into digital
signals by the channel-interleaved PADC. The recorded
signals are preprocessed as the training dataset for neural
network training. We segment the valid part from the re-
ceived signal by calculating the cross-correlation function
of the ground truth and the output of the OSC. For each
sample, we also subtract its mean value to avoid the influ-
ence of theDC component. Ninety-eight percent of the pro-
duced data are used to train the model and the remaining
2% are used to test our model at the same time.

To optimize the kernel weights and other network
parameters, let x and y denote the input of the network
and the ground truth, respectively. Hence, the mean
square error (MSE) between the reconstructed signal
and the ground truth can be defined as follows:

MSE ¼ 1
N

XN

i¼1

½yi − f ðxi ; θÞ�2; (1)

Table 1. Detailed Structure of the DFCN

Block

Encoder Decoder

Filters Kernel Stride Rate Filters Kernel Stride

1

Conv1 16 1 × 3 1 × 1 / Deconv1 256 1 × 4 1 × 2

Conv2 32 1 × 5 1 × 2 / Deconv2 256 1 × 5 1 × 2

Max pool / 1 × 5 1 × 2 / Deconv3 128 1 × 3 1 × 1

Dilated Conv 32 1 × 4 / 4

2

Conv1 64 1 × 3 1 × 1 / Deconv1 128 1 × 4 1 × 2

Conv2 128 1 × 5 1 × 2 / Deconv2 64 1 × 5 1 × 2

Max pool / 1 × 5 1 × 2 / Deconv3 32 1 × 3 1 × 1

Dilated Conv 128 1 × 4 / 4

3

Conv1 256 1 × 3 1 × 1 / Deconv1 32 1 × 4 1 × 2

Conv2 256 1 × 5 1 × 2 / Deconv2 16 1 × 5 1 × 2

Max pool / 1 × 5 1 × 2 / Deconv3 1 1 × 3 1 × 1

Dilated Conv 256 1 × 4 / 4

Fig. 2. Experimental setup for the ultra-wideband signal sepa-
ration architecture. AWG, arbitrary waveform generator; TA,
transmitting antenna; RA, receiving antenna; AMLL, actively
mode-locked laser; MZM, Mach–Zehnder modulator; EDFA,
erbium-doped fiber amplifier; OTDL, optical tunable delay line;
DOMZM, dual-output MZM; PD, photodetector; MG, micro-
wave generator; PS, power splitter; FD, frequency divider;
OSC, oscilloscope.
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where f is a model to be learned by minimizing the objec-
tive function, and θ is the set of hyper-parameters includ-
ing weights and biases in our model. We use an ‘adam’
optimizer with an initial learning rate of 0.001 for back
propagation. The whole network is initialized by random
weights and biases drawn from Gaussian distributions[27].
We use the TensorFlow software library to train the net-
work over 500 epochs, which takes roughly around 8 h on
two NVIDIA GTX 1080Ti 11 GB graphics processing
units (GPUs). The entire model is trained end-to-end.
Figure 3(a) illustrates the trend of MSE with the growth
of epochs. When the epochs are small, the parameter ad-
justment is still unfinished due to limited iteration times.
As the epochs grow, the parameters are further optimized,
contributing to the gradually improved performance.
After training, all of the parameters of our network are
fixed. The DFCN can automatically reconstruct target
signals from mixed signals, which are not included in
the training set.
The comparison of the time-frequency spectra before

and after separation is shown in Figs. 3(b) and 3(c). In
addition to the target signal and the generated interfer-
ence signal, there are some nonlinear components and mis-
matched components caused by the inherent flaws of the
PADC. In recent years, a channel mismatch elimination
algorithm based on fractional Fourier domain filtering

and an algorithm for channel mismatch compensation
in the frequency domain have been proposed and demon-
strated[28,29]. Here, the mismatched component is consid-
ered as a special interference signal, which is introduced
by the channel-interleaved PADC rather than the wireless
channel. The mixed signal is input into the DFCN.
Through convolution and pooling processing, a series of
feature maps are generated. Then, the cascaded deconvo-
lution blocks reconstruction of the target signal according
to the feature maps. In order to further compare the differ-
ence between the reconstruction results of the network
and the ground truth, we calculate the residual between
the output of DFCN and the ground truth. It can be seen
that the DFCN is able to separate the target signal from
the mixture. As shown in Fig. 3(e), although extra non-
linearities are introduced by the neural network, the
power of these nonlinearities is minor compared with
the reconstructed signal. The quality of the reconstructed
signal is characterized by the signal-to-noise ratio (SNR).
The SNR is yielded by comparing the ground truth and
residual. Figure 4(a) shows the box plot of the SNR of dif-
ferent categories of signals reconstructed by DFCN. It is
found that after DFCN reconstruction, the SNR of most
signals in the test set exceeds 15 dB. Despite the fact that
the SNR of a few reconstruction results is of a low level

Fig. 3. (a) Training progress of our proposed network. (b),
(c) The comparison of the time-frequency spectra before and
after separation. (d) Ground truth of the target signal.
(e) Residual between the separation result and the ground truth.

Fig. 4. Experimental results. (a) The box plot of the SNR of dif-
ferent signals reconstructed by DFCN on the test set. Q1, lower
quartile; Q3, upper quartile. (b) Separation results of LFM sig-
nals at different amplitudes on the test set.
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and that a difference in the separation ability for different
signals exists in the DFCN, the DFCN can effectively
separate ultra-wideband mixed signals in most cases.
Figure 4(b) shows the separation results of LFM signals
at different amplitudes on the test set. As the amplitude
of the signal grows (namely the increase in modulation
depth), the SNR of the signal reconstructed by the DFCN
remains at a high level. The immunity to nonlinear effects
is attributed to the fact that the training set covers mixed
signals of different amplitudes. Therefore, the trained
DFCN can adapt to the changes in signal amplitude,
which ensures the performance of the system.
Furthermore, we implement the signal separation for

digitally modulated signals to quantitively verify the effec-
tiveness and performance improvement of the proposed
method. In the experiment, the carrier frequency is set
to 2.5 GHz, and the type of modulation is binary phase
shift keying (BPSK). The transmission bit rate is set to
250 Mb/s, and the bit information inside is completely
randomly generated. Here, two antennas are adopted to
transmit the digitally modulated signals and the interfer-
ence signals. The digital signal is transmitted by a TA
(TA2, A-INFO LB-340-15-C-SF; frequency range, 2.2–
3.3 GHz). TA1 is used to transmit the microwave signal
mentioned previously as interference source. The rest of
the procedure is the same as the experiments performed
earlier. We calculate the average BER before and after
the network separation, respectively. Performance evalu-
ation results are shown in Fig. 5. The blue line presents the
average BER on the test set without DFCN separation.
Due to the interference signals and inherent flaws of the
PADC, the average BER is as high as 30.63%. The red
and green lines represent the average BER on the training
and test sets, respectively. Obviously, it can be seen that
before and after DFCN separation, the average BER has
been improved by about three orders of magnitude.
In conclusion, we have experimentally demonstrated

the ultra-wideband signal acquisition based on a
channel-interleaved PADC and a DFCN. We use a
channel-interleaved PADC to achieve the reception
of ultra-wideband signals. In order to alleviate the inter-
ference among wideband signals, we consider the mixed

signals as a combination of the target signal and
the interference. Then, the DFCN is used to realize the
separation of wideband mixed signals, which greatly re-
duces the influence of interference on the target signal.
Furthermore, this is completely an end-to-end mapping,
which can save us a lot of tedious operations while en-
suring high signal quality. Finally, to quantitatively
compare the performance before and after separation,
we implement signal separation for digitally modulated
signals. The experimental results show that the average
BER has been improved by about three orders of mag-
nitude. We believe this work promotes the application
of channel-interleaved PADC in modern information
systems.
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