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Squeezed vacuum, as a nonclassical field, has many interesting properties and results in many potential appli-
cations for quantum measurement and information processing. Here, we investigate a single atom–cavity quan-
tum electrodynamics (QED) system driven by a broadband squeezed vacuum. In the presence of the atom, we
show that both the mean photon number and the quantum fluctuations of photons in the cavity undergo a
significant depletion due to the additional transition pathways generated by the atom–cavity interaction.
By measuring these features, one can detect the existence of atoms in the cavity. We also show that two-photon
excitation can be significantly suppressed by the quantum destructive interference when the squeezing
parameter is very small. These results presented here are helpful in understanding the quantum nature of
the broadband squeezed vacuum.
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Cavity quantum electrodynamics (QED) is the study of
the interaction between photons confined in a high-finesse
cavity and quantum emitters including atoms, quantum
dots, and so on, under conditions where the quantum
nature of cavity photons is dominant[1,2]. The most basic
model of light–matter interaction is a single atom interact-
ing with photons in the cavity, which is known as the
Jaynes–Cummings model and provides many interesting
QED effects, including vacuum Rabi splitting[3], single
photon blockade, and so on[4–6]. It also provides possibil-
ities to achieve quantum information processing and
communication by fully controlling the cavity QED
systems[7–11].
The most essential requirement for realizing the above

intriguing applications is the availability of strong cou-
pling between the quantum emitters and cavity[2,12–14].
When a light field is confined inside the mode of a high-
quality (Q) cavity, the quantum emitters, trapped inside
the mode, can coherently exchange energy with the light
field. As a result, the energy exchange rate becomes much
larger than both the decay rate of the quantum emitters
and photon decay rate from the cavity. In this case, the
cavity QED system is under the condition of the so-called
strong coupling[15]. Beside this, how to efficiently manipu-
late the quantum emitter is another key factor for realizing
quantum information processing[16–24].
Due to its quantum nature and extremely high

coherence, the atom is a good candidate for quantum com-
putation and communication[25]. Benefitting from the de-
velopment of laser cooling and trapping technology[26], it is
possible to cool atoms from room temperature to sub-
millidegrees Kelvin[27] and subsequently keep atoms
trapped at single atom level for a long time. Up to now,

several groups worldwide have been able to strongly
couple a single or several trapped atoms to the cavity
mode[28–30], which boosts the development of the cavity
QED. Recently, great attention has been paid to the re-
search of nonclassical fields due to their quantum statis-
tical properties[31–34]. In particular, the squeezed vacuum,
as a quantum state of the electromagnetic field with very
special properties, has been successfully produced in labo-
ratory[35] and widely used in artificial atom–cavity QED
systems[36,37]. If the bandwidth of the squeezed vacuum
is large enough, it can be treated as a reservoir to the atom
subjected to such a field. However, the squeezed vacuum,
contrary to the ordinary vacuum, carries some phase in-
formation, and the behavior of the atom in such a reservoir
is quite different from its behavior in the ordinary vacuum.
Based on these features, the squeezed vacuum has been
used to detect a single atom[38] and realize the superradiant
phase transition[6], multiphoton blockade[39], and so on[40–43].

In this Letter, we study the interaction of a single atom
and the cavity driven by a broadband squeezed vacuum.
Our aim is to show the features of the quantum fluctuation
of the squeezed vacuum and reveal the physical mecha-
nism of the interaction between the atom and squeezed
vacuum. For an empty cavity, the broadband squeezed
vacuum results in a constant mean photon number with
strong quantum fluctuations at the central frequency. In
the presence of the atom, additional transition pathways
take place and result in energy transfer from the cavity to
the atom. Therefore, significant changes of the mean pho-
ton number and the quantum fluctuations of photons in
the cavity can be observed due to the interaction between
the cavity and atom. By measuring these features of pho-
tons in the cavity, one can detect the existence of atoms in
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the cavity. We also show that additional transition path-
ways may result in quantum destructive interference for
small squeezing parameters. Consequently, the two-
photon excitation will be significantly suppressed. We
note that a recent study with the same Hamiltonian re-
ports the photon blockade phenomenon[39] by numerically
solving the master equation. However, we reveal the
physical mechanism of the squeezing induced blockade
of the two-photon excitation, which is helpful for readers
to understand the nature of the broadband squeezed
vacuum.
In Fig. 1(a), we first consider a two-level atom trapped

in a single mode cavity with high Q, resulting in strong
coupling between the cavity mode and atom. The cavity
mode frequency is labeled as ωcav, and the atomic reso-
nance frequency is labeled as ωA ¼ ωe − ωg, with
ℏωα ðα ¼ e; gÞ being the energy of state jαi. A broadband
squeezed vacuum with central angular frequency ωsq is in-
jected into the cavity, as shown in Fig. 1(a).
Under the electric dipole approximation, the Hamilto-

nian of this system can be expressed in the rotating
frame of the central frequency of the squeezed field, which
reads[44,45]

H ¼ ΔAσee þ Δcava†a þ gðaσeg þ a†σgeÞ; (1)

where the atomic operator σij ¼ jiihjj ði; j ¼ fe; ggÞ, and g
is the coupling constant between the atom and cavity. The
annihilation and creation operators of the cavity photon
are denoted by a and a†, respectively. Here, the detunings

for the atom and cavity are defined by ΔA ¼ ωA − ωsq and
Δcav ¼ ωcav − ωsq, respectively.

The evolution of this system, given by Eq. (1), is
governed by the standard master equation[45], which is
given by

d
dt

ρ ¼ −
i
ℏ
½H ; ρ� þℒAðρÞ þℒcavðρÞ; (2)

where ρ is the density matrix operator.ℒAðρÞ andℒcavðρÞ
are the damping terms for the atom and cavity, respec-

tively. In general, they have the following forms:ℒAðρÞ ¼
γð2σ†egρσeg − σegσ

†
egρ− ρσegσ

†
egÞ and

ℒcavρ ¼ −κð1þ NÞða†aρ− 2aρa† þ ρa†aÞ
− κNðaa†ρ− 2a†ρa þ ρaa†Þ
þ κMða†a†ρ− 2a†ρa† þ ρa†a†Þ
þ κM ∗ðaaρ− 2aρa þ ρaaÞ;

with γ and κ being the damping rate of the atom and cav-
ity, respectively. Here, N ¼ sinh2ðrÞ is the photon number
of the squeezed field, with r being the squeezing param-
eter. M ¼ coshðrÞ sinhðrÞeiϕ denotes the two-photon cor-
relation in the injected squeezed vacuum with ϕ being the
phase of the squeezed field[46–48]. The corresponding transi-
tion pathways for an empty cavity and a single atom–
cavity QED system are illustrated in Figs. 1(b) and 1(c),
respectively. The squeezed vacuum driven single atom–
cavity QED system, governed by Eq. (2), has been
studied under the condition of a bad cavity, where the
atom–cavity coupling constant g < κ[12,45]. In the following,
we extend the research to the strong coupling regime,
i.e., g > κ; γ.

To begin with, we examine the cavity excitation spec-
trum of the empty cavity by numerically solving Eq. (2).
As shown in Fig. 2(a), the mean photon number ha†ai,
where hOi denotes the expected value of the operator
O, is independent to the squeezed vacuum frequency (blue
dashed line). For the single atom–cavity QED system, it is

Fig. 1. (a) Sketch of the single atom–cavity QED system driven
by a broadband squeezed vacuum with central frequency ωsq.
The resonance frequency of this two-level atom ωA ¼ ωe − ωg

with ℏωα ðα ¼ e; gÞ being the energy of state jαi. Here, g is
the coupling constant between the atom and cavity. γ and κ
are the decay rates of the atom and cavity, respectively. Panels
(b) and (c) demonstrate the energy levels and the corresponding
transition pathways for the empty cavity and the atom–cavity
QED system, respectively.

Fig. 2. Panels (a) and (b) show the cavity excitation spectrum,
i.e., the mean photon number ha†ai, and the quantum fluc-
tuation of cavity photons jhaaij2 with r ¼ 0.2. For the empty
cavity (blue dashed curves), the cavity mode frequency is fixed,
and Δcav ¼ ωcav − ωsq. In the presence of the atom (red solid
curves), we assume ωcav ¼ ωsq and ΔA ¼ Δcav ¼ ωA − ωsq. The
system parameters are given by g∕κ ¼ 15 and γ∕κ ¼ 1.

COL 18(12), 122701(2020) CHINESE OPTICS LETTERS December 2020

122701-2



clear to see that a dip in the cavity excitation spectrum
exists when the atomic resonance frequency ωA ¼ ωsq

[see Fig. 2(a), red solid curve]. Here, we choose the system
parameters as g∕κ ¼ 15, γ∕κ ¼ 1, and r ¼ 0.2. This phe-
nomenon can be explained by comparing the transition
pathways shown in Figs. 1(b) and 1(c). In the presence
of the atom, the energy exchange between the cavity
and atom becomes dominant when the coupling constant
is strong enough. Thus, the spontaneous emission of the
atom leads to a dip in the cavity excitation spectrum.
Apart from the mean photon number, the quantum

fluctuations of photons in the cavity also change signifi-
cantly when the atom is strongly coupled to the cavity
mode. To show this point, we plot the quantum fluc-
tuation jhaaij2 by taking the same system parameters used
in Fig. 2(a). In the absence of the atom, the quantum fluc-
tuations of cavity photons only exist near the central fre-
quency of the squeezed vacuum and reach its maximum at
the central frequency (see blue dashed curve). When the
squeezed vacuum is off-resonance with the cavity, the
fluctuations of cavity photons drop quickly, as shown in
Fig. 2(b). However, in the presence of the atom, the fluc-
tuations of cavity photons at the central frequency disap-
pear since the energy exchange between the atom and
cavity smooths the fluctuations induced by the two-
photon process (red curve). When the atomic resonance
frequency is detuned far away from the squeezed vacuum
frequency, the fluctuations take place again. By measuring
these features induced by the interaction between the
atom and squeezed vacuum, it is possible to sense atoms
in the cavity.
In addition, the interaction of the atom and the

squeezed vacuum results in quantum destructive interfer-
ence, which significantly suppresses the two-photon exci-
tation. To show this interesting phenomenon, we consider
the case of small squeezing parameter r, i.e., N ≪ M ≪ 1.
In this case, only the states in one- and two-photon spaces
need to be considered, which result in five quantum states
labeled by j1i ≡ jg; 0i, j2i ≡ jg; 1i, j3i ≡ je; 0i, j4i ≡ jg; 2i,
and j5i ≡ je; 1i, respectively. All decays, couplings, and
transition pathways are shown in Fig. 3(a).
Using the Eq. (2), the equations of motions for elements

of the density matrix are given by

_ρ11 ¼ 2γρ33 þ 2κðN þ 1Þρ22 − 2κðN þMÞρ11 þ 2κMρ44;

(3a)

_ρ22 ¼ −iðρ32 − ρ23Þg þ 2γρ55 − κð6N þ 2Þρ22
þ 4κðN þ 1Þρ44 þ 2κNρ11; (3b)

_ρ33 ¼ −iðρ23 − ρ32Þg − 2γρ33 − 2κNρ33 þ 2κðN þ 1Þρ44;
(3c)

_ρ44 ¼ −i
���
2

p
ðρ54 − ρ45Þg − κð10N þ 4Þρ44

þ 4κNρ22 þ 2κMρ11; (3d)

_ρ55 ¼ −i
���
2

p
ðρ45 − ρ54Þg − 2γρ55 − κð6N þ 2Þρ55

þ 2κNρ33; (3e)

_ρ32 ¼ −iðρ22 − ρ33Þg − γρ32 − κð4N þ 1Þρ32
þ 2

���
2

p
κðN þ 1Þρ54; (3f)

_ρ54 ¼ −i
���
2

p
ðρ44 − ρ55Þg − γρ54 − κð8N þ 3Þρ54

þ 2
���
2

p
κNρ32; (3g)

where the individual element of density matrix ρij ¼
hijρjji and ρij ¼ ρ∗ji . For weak driving field, Eq. (3) can
be solved under the steady-state approximation.

Assuming N ≪ M ≪ 1, we have

ρ22 ¼
κN ½g2 þ γðκ þ γÞ�ρ11
κ½g2 þ γðκ þ γÞ� þ γg2

; (4a)

ρ33 ¼
κNg2ρ11

κ½g2 þ γðκ þ γÞ� þ γg2
; (4b)

and ρ32 ≈ iðρ33 − ρ22Þg∕ðκ þ γÞ. Then, inserting Eq. (4)
into Eqs. (3d), (3e), and (3g), one can obtain the popula-
tion in state jg; 2i, which reads

ρ44 ≈
1
4κ

�
2κMρ11 − i

���
2

p
gðρ54 − ρ45Þ

�

¼ Mρ11
2

−
8κNρ22g2

ðκ þ γÞðγ þ 3κÞ ; (5)

with ρ54 ≈ 2
���
2

p
κNρ32∕ð3κ þ γÞ. Clearly, the destructive

interference effect will take place when two terms on
the right hand side of Eq. (5) cancel each other. Thus,
the two-photon excitations will be significantly suppressed
(i.e., ρ44 ≈ P2 → 0) for small r.

To verify the above analysis, we evaluate the probabil-
ity Pn ¼ hnjρcavjni of finding photons in the Fock state jni
by numerically solving Eq. (2) with the same system
parameters used in Fig. 2. The reduced density matrix
ρcav is obtained by taking partial trace with respect to
the atom. As shown in Fig. 3(b), the probability of
two-photon Fock state P2 is close to zero when r < 0.2
(see orange curve), while the probability of one-photon
Fock state P1 ≈ ρ22 ≠ 0 (see blue curve) implies that

Fig. 3. (a) Quantum states and transition pathways of the single
atom–cavity QED system driven by a squeezed vacuum.
(b) Mean photon number and probabilities of one- and two-
photon excitations versus the squeezing parameter r.
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the two-photon excitation is blockaded. It is worth point-
ing out that, in the weak driving limit, the mean photon
number ha†ai ≈ P1 so that the multiphoton excitations are
also be blockaded, corresponding to Pn ≈ 0 ðn > 2Þ.
Next, we discuss the feasibility of realizing the suppres-

sion of two-photon excitation in experiments. In Figs. 4(a)
and 4(b), we take γ∕κ ¼ 1 and plot the probabilities of
one- and two-photon Fock states as functions of the
squeezing parameter r and the normalized coupling con-
stant g∕κ. It is clearly seen that the two-photon excitation
can be efficiently suppressed over a wide range of coupling
constant g for small squeezing parameters. Thus, a robust
experimental condition is available.
For large squeezing parameter r, one can obtain N ≃M

so that the transitions denoted by Nκ in Fig. 3(a) become
as important as the transitions denoted byMκ. Therefore,
multiphoton excitations must be considered. Thus, Eq. (3)
is invalid, and one has to numerically solve Eq. (2) to
obtain probabilities of photon states Pn. As shown in
Fig. 5, the probability of two-photon state is enhanced sig-
nificantly and has the same order of the probability of the
one-photon state with the increase of the squeezing
parameter r. Correspondingly, the mean photon number
also becomes very large, since the multiphoton processes
take place.

In conclusion, we have carefully studied the single
atom–cavity QED system driven by a broadband
squeezed vacuum under the strong coupling regime. Due
to the energy exchange between the atom and cavity, the
mean photon number and quantum fluctuations of the
cavity photons are significantly changed. We show that,
in the presence of the atom, a dip at the central frequency
of the squeezed field exists, which can be used to detect the
existence of the atom. We also show that the quantum
fluctuations of cavity photons disappear when the atomic
resonance frequency is the same as the squeezed vacuum
frequency. However, the quantum fluctuations increase
significantly when the frequency of the squeezed field is
detuned far away from the cavity resonant frequency.
Moreover, we find that the two-photon excitations are sig-
nificantly suppressed for small squeezing parameters be-
cause of the quantum destructive interference effect.
We also show that this phenomenon can be easily realized
with current experimental conditions and may be used to
generate the single photon state. All results presented in
this Letter may help readers understand how the squeezed
vacuum interacts with the cavity QED system more
clearly.

This work was supported by the National Natural
Science Foundation of China (No. 11774271).
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