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In this work, a neural network (NN) method is developed for pulse duration inferring for an erbium-doped fiber
laser at 1550 nm. Experimentally, the interferometric autocorrelation trace is observed clearly with the use of the
two-photon absorption (TPA) effect in a GaAs photodiode. The intensity autocorrelation function is curve-
fitted by the NN with an appropriate performance, and the measuring accuracy is consistent with a commercial
autocorrelator. Compared with the Levenberg–Marquardt curve-fitting method, the NN can retrieve the inten-
sity autocorrelation function more stably and has a certain noise reduction ability, simplifying the signal process-
ing for a TPA photodiode-based autocorrelator.
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Two-photon absorption (TPA)[1–5] is a kind of photonic ap-
proach, as a quadratic response to the incident optical in-
tensity. Recently, TPA in semiconductors is employed to
measure optical autocorrelation due to similar sensitivity
and potential low-cost compared to a second-harmonic
generation (SHG) crystal[6] autocorrelator. In the previous
work[7], it is expounded that Si and GaAs photodiodes can
be used as TPA devices for autocorrelation measurement
of laser pulses at 1550 nm. The difference between Si and
GaAs is mainly compared for dispersive pulses measure-
ment. Compared with Si, GaAs is a direct gap semicon-
ductor material whose electronic energy level transition
does not involve the simultaneous emission or absorption
of a phonon, and TPA has been observed experimentally
to be stronger in GaAs presently[8,9]. Therefore, GaAs can
be preferred in autocorrelation measurements in order to
avoid the influence of the environment.
Both the intensity and interferometric autocorrelation

cannot retrieve the pulse information (intensity and
phase) completely. They are not sufficient to determine
the temporal profile of the pulse, but we can curve-fit
the autocorrelation signal to measure the pulse duration.
For traditional fitting methods such as the Levenberg–
Marquardt (L-M) method, we need to preset the pulse
function in advance. A measured autocorrelation signal
cannot be the perfect Gauss or sech2 shape due to the
influence of the electronic noise, which could result in
bad fitting. In recent years, with the development of deep
learning, neural networks (NNs) have shined in public
security, national defense, and industry. The universal
approximation theorem[10,11] shows that any function
can be theoretically approximated by NNs with at least
one hidden layer. It shows its unique advantages in
curve-fitting.
In this work, we focus on measuring the temporal profile

of pulses at 1550 nm from an erbium-doped fiber laser

using an NN method. A photodiode-based autocorrelation
measurement experiment system using a Michelson inter-
ferometer configuration is shown in Fig. 1. For the inten-
sity autocorrelation measurement [Fig. 1(a)], a single
sequence of pulses is split into two orthogonally polarized
parts (O part and E part) with the same intensity by the
half-wave plate and polarizing beam splitter (PBS). The
light of the O part propagates into the reference arm and is
reflected by the reference corner cube MR, while the light
of the E part is transmitted into the scanning arm and re-
flected by the other corner cube MT mounted on a mov-
able stage. Quarter-wave plates between the PBS and
cubes can tune the polarization of the beams, avoiding
the interference. For Fig. 1(b), the PBS is replaced by
a beam splitter (BS), and all of the plates are removed.
Without the control of the polarization, interferometric
autocorrelation will occur in this configuration. For a

Fig. 1. Experimental setup of the TPA-based (a) intensity and
(b) interferometric autocorrelator using a GaAs photodiode.
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strong TPA effect, we place an objective lens group be-
tween the PBS (or BS) and the photodiode to focus laser
pulses onto the photosensitive area of the photodiode.
In the interferometric autocorrelation optical configura-

tion, the optical intensity of the recombined pulses can be
expressed as

I ðτÞ ¼ ½EðtÞ þ Eðt − τÞ�2; (1)

where EðtÞ and Eðt − τÞ denote the optical fields of the
reference and scanning laser pulses, respectively. τ repre-
sents the time delay between two sequences of pulses.
When two sequences of pulses from the same laser re-

combine at the photosensitive area of the photodiode,
twice the photon energy exceeds the semiconductor energy
gap, and a strong TPA can be excited. Hence, the voltage
signal induced by TPA is associated with the square of the
incident light intensity as

V ðτÞ ¼ m
Z

∞

−∞
j½EðtÞ þ Eðt − τÞ�2j2dt; (2)

wherem is an intensity coefficient related to the photosen-
sitive area of the photodiode, the equivalent capacitance
of the photodiode with bias voltage, and the TPA coeffi-
cient. Thus, the measured interferometric autocorrelation
trace can be obtained as a function of the delay,

AðτÞ ∝
Z
½I 2ðt − τÞ þ I 2ðtÞ�dt þ 4

Z
I ðt − τÞI ðtÞdt

þ 2
Z
½I ðt − τÞ þ I ðtÞ�EðtÞE�ðt − τÞdt þ c:c.

þ
Z

E2ðtÞE�2ðt − τÞdt þ c:c: (3)

The first term is a constant that is uninteresting for us.
The second term represents the intensity autocorrelation,
which can be extracted by a fitting method. The third
term considers the oscillations at ω in delay, which is
the sum-of-intensities-weighted interferogram of EðtÞ.
The fourth term is the interferogram of the second har-
monic, equivalent to the spectrum of the second harmonic
(oscillations at 2ω in delay).
For pulse width inferring, we can import the intensity

autocorrelation part of Eq. (3) into an NN for the curve-
fitting. Figure 2 shows the basic process of machine learn-
ing and an example of a simple typical NN. A typical
machine learning process includes target determination
(determine the model prediction target), data cleaning
(handle invalid and missing values), model building
(choose the right machine learning model), model training
(update model parameters continuously by using the
data), and model application (achieve goal prediction
by using the model). To build an NN model, as shown
in Fig. 2(b), we should set up the input layer, hidden layer,
and output layer, and the number of neurons and activa-
tion function of each layer should be determined appropri-
ately. The input data ðx0;…; xi ;…; xnÞ feed forward to

produce the output data, and the output error is in back
propagation with the target data y to modify the param-
eters of the model.

If we define τ as the network input, which is the time
delay series of the detected autocorrelation signal, the
network output can be simplified to

y ¼
XN
i¼1

wiY

"XN
i¼1

w1igiðτÞ þ bj

#
; (4)

where w1i and wiY are the weights of the network, and gi is
the Sigmod function for hidden neurons. Here, we defineN
as epochs of the NN. Mathematically gi can be described
by the equation

giðxÞ ¼
1

1þ e−x : (5)

The network is then trained using a set of two-
dimensional arrays containing input–output pairs ðxi ; yiÞ
with xi and yi representing the time data and correspond-
ing value data of the desired autocorrelation function.
Often it is convenient to use the least square method when
evaluating the quality of the network, that is,

MSE ¼ 1
N

�����������������������������XN
i¼1

ðy 0
i − yiÞ2

vuut : (6)

Finally, the weight and bias are automatically updated
in the network through back propagation and gradient
descent. When the threshold condition (performance or
epochs) is reached, a model suitable for signal-fitting is
formed.

Experimental observations of the interferometric auto-
correlation are performed to test the TPA-based auto-
correlator. A nonlinear polarization rotation (NPR)
mode-locked erbium-doped fiber laser (C-fiber 1550,
Menlo System) is used to generate pulses in the experi-
ment. It produces about 30 mW, 88 fs pulses. A GaAs

Fig. 2. Example of a simple typical NN. (a) The basic process of
machine learning and (b) the brief structure of the NN.
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photodiode is used to generate TPA, and its photosensi-
tive area is about 500 μm. A linear stage (M-521.DD,
Physik Instrument Co., Germany) with a 200 mm move-
ment range and 0.1 μm resolution is used to generate the
delay in the experimental system.
Here, we use the configuration in Fig. 1(b). A measured

GaAs-based interferometric autocorrelation trace is
plotted in Fig. 3(a). To calibrate the pulse duration, fem-
tosecond laser pulses are coupled into a commercial
autocorrelator based on the conventional SHG crystal
[pulseCheck universal serial bus (USB), Angewandte
Physik & Elektronik GmbH]. The interferometric autocor-
relation curve is obtained by pulseCheck USB as shown in
Fig. 3(b) for comparison. For the interferometric autocor-
relation measurement, the TPA effect in the GaAs photo-
diode is in excellent agreement with the traditional SHG.
To further retrieve the pulse width information, the

TPA-based autocorrelation function of the laser pulse is
measured by an NN method with the intensity autocorre-
lation experimental configuration. Here, we build an NN
with two hidden layers. The PyTorch kit in Python is used
to generate the NN, and the number of neurons in each
hidden layer is set to 10. The performance parameter re-
fers to the maximum value of the mean square error
(MSE). If the current MSE is less than the set value,
the training is stopped. This indicator can be set with
the trainParam.goal parameter. When the performance
is set, the corresponding parameters gradient, momentum
constant (μ), and validation checks are generated. The
gradient parameter represents the current gradient value
in the gradient descent method. If the current gradient
value reaches the set value, the training is stopped. μ also
stands for momentum parameter, which is included in the
weight update expression to avoid the problem of local
minimum. Sometimes the network may get stuck to the
local minimum and the convergence does not occur.
The range of μ is between 0 and 1. The validation
checks parameter is a generalization ability check. If
the training error does not decrease but rises for six con-
secutive times, the training is forcibly ended.
For the curve-fitting, we just set the number of neurons

in the input and output layer to one. Respectively, we
select the transfer function of the hidden layer as tansig,
the transfer function of the output layer as purelin, and
the learning algorithm as trainlm. The size of the input

and label data is a 1 × 10;000 array, corresponding to
the sampling number of the autocorrelation signal. The
epochs are set as 10,000, and we train the model at four
performance values of 10−5, 10−6, 10−7, and 10−8. The
curve-fitted autocorrelation traces are depicted in Fig. 4.
That is to say, when the performance is improved to
about 10−7, we can get a nice curve-fitting. The FWHM
of the fitted autocorrelation function is calculated as
about 124.18 fs with the performance of 10−7.

The training process is represented in Fig. 5. Overall,
the entire training process did not fall into the local opti-
mum. The training ends at epoch 547, while the

Fig. 3. Interferometric autocorrelation signals measured by
the (a) TPA photodiode-based autocorrelator and (b) SHG
autocorrelator.

Fig. 4. TPA-based autocorrelation traces curve-fitted by the
NN with the performance of (a) 10−5, (b) 10−6, (c) 10−7, and
(d) 10−8.

Fig. 5. Training process and error analysis. (a) The gradient at
each epoch, (b) MSE at each epoch, (c) comparison between the
output and target, and (d) structure of NN for this measurement
system.
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performance reaches 10−7. Figure 5(a) shows the training
state, including the update process of the parameter gra-
dient, μ, and validation checks. The gradient generally up-
dates with a downward trend. The μ parameter floats in
the normal range. During the training process, the valida-
tion check has been kept at a value of zero, indicating that
the model training is very successful. The best training
performance is 1.3096 × 10−7 at epoch 547, as shown in
Fig. 5(b). At last, to show the performance of the fitting,
in Fig. 5(c), the target and output of the model are com-
pared using the regression analysis. The structure of the
NN for this measurement system is shown in Fig. 5(d).
The relationship between the target and output can be lin-
ear-fitted by

Output ¼ 0.84·Targetþ 0.082; (7)

where Target and Output represent the real and predicted
signal. R of the regression is calculated as about 0.91642.
The resolution in the pulse duration measurement

mainly depends on the translation step size of the stage
used to generate the variable delay. The uncertainty can
be deduced by 2δs ¼ c·δτ, where δs is the positioning ac-
curacy. The movement resolution is 0.1 μm here corre-
sponding to a delay resolution of about 0.7 fs. The
average error of the measured FWHM of the fitted auto-
correlation function is recorded as 0.9 fs with the perfor-
mance of 10−8, and 1.1 fs with the performance of 10−7.
Experimental results coincide with the theoretical analy-
sis. Furthermore, setting a better performance can achieve
a better fitting, but it will cost more model training time.
So, we should choose the right performance, considering
not only a higher performance for NN.
To further compare the performance of L-M and NN,

the autocorrelation trace was Gaussian-fitted using the
normal L-M fitting method. Due to the effect of the noise,
bad fitting occurs, as shown in Fig. 6(a). Here, a set of test
pulses is selected, and two out of every 10 signals have bad
fitting on average. Similarly, a normal L-M fitting is com-
pared in Fig. 6(b). It is easily seen that the bad fitting may

occur with the L-M method, when the autocorrelation sig-
nal contains some slight noise. Obviously, NN can restore
the intensity autocorrelation trace well, regardless of the
noise. However, the normal L-M fitting performs worse for
the signal with the noise. Thus, for pulse width inferring,
NN is a better choice.

It is clear that both L-M and NN can curve-fit autocor-
relation traces in pulse duration measurements. However,
L-M needs to preset the type of fitting functions, so it is
too sensitive to the shape matching of the actual signal,
which reduces the success rate of the fitting substantially.
Furthermore, L-M gets a weak ability to fit the signal with
the noise, and it can be easily misguided by the noise.
NN can solve these problems very well. With appropriate
neurons and layers, NNs can generate arbitrary functions.
In this way, there is no need to preset the fitting function,
and it can still fit the autocorrelation trace well in the
presence of noise. Therefore, NN is preferable for the laser
pulse duration measurement to improve the robustness of
the autocorrelator.

In summary, we develop a TPA-based temporal profile
inferring method of the erbium-doped fiber laser pulses
at 1550 nm using an NN method. NN can retrieve the in-
tensity autocorrelation function extremely accurately and
has a certain noise reduction ability, simplifying the
signal processing process for a TPA photodiode-based
autocorrelator.
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Fig. 6. Gaussian-fitted autocorrelation traces by the L-M
method. (a) Bad curve-fitting result for a signal with high noise
and (b) good curve-fitting result for a signal with lower noise.
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