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A modulation classification method in combination with partition-fractal and support-vector machine (SVM)
learning methods is proposed to realize no prior recognition of the modulation mode in satellite laser commu-
nication systems. The effectiveness and accuracy of this method are verified under nine modulation modes and
compared with other learning algorithms. The simulation results show when the signal-to-noise ratio (SNR) of
the modulated signal is more than 8 dB, the classifier accuracy based on the proposed method can achieve more
than 98%, especially when in binary phase shift keying and quadrature amplitude shift keying modes, and the
classifier achieves 100% identification whatever the SNR changes to. In addition, the proposed method has
strong scalability to achieve more modulation mode identification in the future.
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As an optimal communication method for high transmis-
sion rate, large capacity, and low power consumption of
the satellite system, laser communication technology
breaks through the limitation of microwave application
in satellite communication[1]. In ground-to-satellite/satel-
lite-to-ground links, the laser beam is in direct contact
with the atmosphere, and the channel state is not stable
due to spatial and temporal changes in the refractive index
of the atmosphere, which poses a serious challenge to the
performance of optical communication systems[2,3]. Adap-
tive modulation and coding (AM&C) technology can
freely select modulation and coding modes according to
the specific channel state; some researchers have applied
AM&C technology to the next generation of global nav-
igation satellite systems, which proves that the AM&C
scheme can effectively improve system throughput[4].
In order to ensure the successful transmission of infor-

mation, the receiver must determine the modulation mode
of the transmitter; if the classification of the modulation
style is incorrect, the whole transmission may fail due to
the demodulator demodulating the information wrong.
Therefore, the automatic modulation classification
(AMC) scheme is proposed[5]. AMC algorithms fall into
two categories: the likelihood-based classifier[6–8] and the
feature-based classifier[9,10]. The main disadvantage of
the former is that it is computationally expensive and sen-
sitive to damage such as phase and frequency offset, while

the feature-based method is robust and less complex to
implement than the former. Researchers proposed
schemes for AMC from various perspectives, such as
the combination of constellation diagram and depth learn-
ing and dictionary learning-based AMC framework[11–13],
that have played an important role in many fields such
as wireless communication[14,15].

In the 1990s, it was discovered that signal characteris-
tics could be extracted from the constellation of
modulated signals[16], but the difficulty is to extract effec-
tive features, and the modulation format continues to
evolve[17–19]. Fractal features have excellent performance
in this respect. In 1975, Mandelbrot put forward the con-
cept of fractals for the first time, to the best of our knowl-
edge, which describe the shape that is similar to the whole
in some way, and which has self-similar properties in struc-
ture, function, information, time, etc.[20]. Subsequently,
the fractal theory gradually developed, and the fractal
methodology, which was born from it, has played a great
value and scientific methodological significance in various
fields, including the application of feature extraction[21–23].

Although many methods have been proposed to realize
AMC, no one has attempted to study automatic modula-
tion recognition from the perspective of fractal and
machine learning. In this Letter, a modulation classifica-
tion method in combination with partition-fractal and
support-vector machine (SVM) learning methods is
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proposed to realize no prior recognition of the modulation
mode in satellite laser communication. The effectiveness
and accuracy of this method are verified under nine
modulation modes. The simulation results show when
the signal-to-noise ratio (SNR) of the modulated signal is
more than 8 dB, the classifier accuracy based on the pro-
posed method can achieve more than 98%, especially when
in binary phase shift keying (BPSK) and quadrature am-
plitude shift keying (QASK) modes, and the classifier
achieves 100% identification whatever the SNR changes
to. The research has certain theoretical significance and
application value for realizing AMC in the satellite com-
munication field.
Different signal modulation modes have different signal

characteristics, in which constellation diagrams can reflect
amplitude and phase information. In order to realize AMC
in satellite communication systems and make correct de-
cisions on the received signal modulation mode, it is nec-
essary to consider how to make use of the features
represented by constellations. To solve this problem, we
propose the following scheme: the whole process of the
judgment work is as shown in Fig. 1. From the figure, the
ground station modulates the data in a modulation mode
and transmits the data to the satellite terminal, and the
satellite terminal recognizes and classifies the received sig-
nals according to the proposed method, determines the
demodulation mode, and then obtains the correct data,
thus completing the one-way communication process.
The proposed method consists of two parts: the

partition-fractal and SVM-based multi-modulation pat-
tern classification methods.
The first step of the method is to obtain the constella-

tion features. As the object of feature extraction, the con-
stellation diagram is composed of a number of modulated
signal vector endpoints, which have self-similar properties
in whole and part, but the distribution of endpoints is dif-
ferent in different modulation modes, so the fractal
method is suitable for fractal feature extraction of the con-
stellation diagram. In this part, a partition-fractal method
is proposed to extract the fractal box dimensions of
the modulated signal constellation diagram, as shown
in Fig. 2.
In the figure, the key operational steps are as follows.

Step 1: Partition the constellation diagram. Observing the
constellation diagram, the information vector endpoints of

different modulation modes are only in certain defined re-
gions, so the constellation diagram is divided into 8 × 8
regions in Fig. 2, and each region is calculated in the next
step.
Step 2: The differential box counting (DBC) method is
used to calculate the box dimension characteristics.

The fractal dimension D can be described as[24]

D ¼ logNr

logð1∕rÞ ; (1)

where for a bounded set A, it is self-similar when A is the
union of the Nr distinct (no overlapping) copies of itself,
each of which is similar to A scaled down by a ratio r.

In this step, the DBC method is applied to find Nr and
calculate theD of the segmented constellations, where, the
minimum and maximum gray levels of the image in the
ði; jÞ grid fall in box numbers k and l.

The contribution of Nr in the ði; jÞ grid is described as

nrði; jÞ ¼ l − k þ 1: (2)

Taking contributions from all grids,

Nr ¼
X

i;j

nrði; jÞ: (3)

To better characterize the constellation diagram fea-
tures, the fractal feature matrix and gray feature matrix
form the final feature matrix, and the calculation process
is shown in Fig. 3. Firstly, based on the partition-fractal
method, the calculated box dimension values are arranged

Fig. 1. System scheme of AMC implementation in satellite com-
munication system.

Fig. 2. Description of the partition-fractal method.

Fig. 3. Calculation process of constellation diagram feature
matrix.
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in a sequence from left to right and from top to bottom,
and thus a box dimension matrix of 1 × 64 (B1, B2, …,
B64) can be obtained, which is the fractal characteristic
matrix of the constellation diagram. Secondly, to exclude
the influence of the region range, four gray level co-
occurrence matrices with different directions (0, 45, 90,
135 deg) are selected, then four kinds of gray level co-
occurrence matrix statistics are calculated and normalized
including contrast, inverse distance, entropy, and autocor-
relation, and the average value and variance are taken as
the final extracted features.
Thus, the constellation feature set can be obtained, and

the final feature matrix contains the geometric scale infor-
mation of the constellation and comprehensive informa-
tion about the direction, adjacent interval, and change
amplitude, which lays a foundation for later classification.
The second step of the method is to train the feature

data set. The SVM is an effective method to implement
the classifier and has excellent performance in preventing
overfitting[25]. To find the optimal hyperplane from the
selected modulation modes to complete the multi-
modulation mode classification, the SVM method is
applied to achieve the learning and classification based
on the constellation diagram feature matrix.
Consider the high requirement of recognition accuracy

in satellite communication systems, where the accuracy of
the classifier is chosen as the performance evaluation stan-
dard, and the formula is shown in Eq. (4), where nc is the
number of constellations correctly classified, and N is the
total number of test constellation samples:

Accuracy ¼ nc

N
: (4)

According to the above description of the proposed
method, the detailed steps for constructing a classifier
and evaluating its performance based on the proposed
method are as follows.
Step 1: Input scope of SNR parameters.
Step 2: Obtain constellation diagrams of different modu-
lation modes in this scope as sets waiting to be classified.
Step 3: Constellation diagram set is divided into a training
set and a test set.
Step 4: Apply the proposed method based on the
partition-fractal method and SVM learning method to
construct the classifier.
Step 5: Evaluate the classifier performance by getting the
accuracy through obfuscation matrices.
Firstly, we analyzed the performance of the classifier

constructed according to the proposed method under dif-
ferent SNR. At each SNR, 100 constellation diagrams are
obtained with a pixel size of 512 × 512 in a single modu-
lation mode, and there are nine types of modes. Then, get
constellation sets of different modulation modes under dif-
ferent SNRs, and divide them into training constellations
and test constellations according to the ratio of 7:3. Fi-
nally, we construct the classifier and verify its perfor-
mance; the simulation parameters are shown in

Table 1, and the accuracy results of classifier with SNR
changing are represented in Table 2.

It is apparent from Table 2 that as the SNR increases
the accuracy of the classifier gradually increases and fi-
nally becomes one, which means 100% recognition can be
achieved. The results prove that the classifier constructed
by the proposed method can realize classification, and the
classification accuracy is higher when the SNR is large.

To verify the superiority of the proposed method based
on partition-fractal and SVM learning methods, we com-
pare the classifier performance with other learning algo-
rithms, including the SVM learning algorithm, bagging
ensemble learning algorithm, k-nearest neighbor (KNN)
search learning algorithm, classification tree learning algo-
rithm, and AdaBoost ensemble learning algorithm. The
simulation parameters are the same as above, but the dif-
ference lies in different learning algorithms replacing SVM
of the proposed method; the simulation results are as
shown in Fig. 4.

From the graph above, the accuracy curves of the five
learning algorithms all show an upward trend with the in-
crease of the SNR, and the performance of the classifier
based on different learning methods are as follows. The
AdaBoost method is the one with the worst performance,
bagging, KNN, and the classification tree are a little differ-
ent in performance under different SNRs and are better
than AdaBoost, and the best-performing method is SVM
learning. The classifier based on SVM still has more than
90% accuracy even under low SNR and achieves more
than 98% accuracy when the SNR is more than 8 dB,
which is obviously superior to other algorithms. Thus, this
result verifies the superiority of the proposed partition-
fractal method and SVM learning method in realizing

Table 1. Simulation Parameters

Symbol rate 1200 bit/s

Sampling frequency 4800 Hz

Frequencies separation 5 Hz

Signal duration 1 s

Signal selectable signal-to-noise
ratio range

0–20 dB

Modulation modes BASK, BPSK, BFSK,
QASK, QPSK, QFSK,
8ASK, 8PSK, 8FSK

Number of constellations 18,900

Constellations size 512 × 512 pixels

Training and test ratio 7:3

Table 2. Accuracy of Classifier under Different SNR

SNR/dB 1 4 6 12 16 20

Accuracy 0.9519 0.9667 0.9741 0.9778 0.9926 1
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AMC. The reason for such curve results may be that SVM
has good performance in preventing overfitting, so the
constructed classifier also performs well in the test set,
and AdaBoost has an overfitting phenomenon.
The results of further analysis of classification accuracy

in different modulation modes are shown in Fig. 5. It is
apparent from the figure that the classifier based on the
SVM learning method has good recognition performance
in different modulation formats compared with other
learning algorithms. In particular, for BPSK and QASK

modes, the classifiers are 100% identifiable regardless of
the SNR change, while the performance is slightly poorer
in the binary amplitude shift keying (BASK) mode. As a
whole, the classification accuracy of SVM-based classifiers
in phase shift keying (PSK) and frequency shift keying
(FSK) patterns is higher than that of amplitude shift key-
ing (ASK), which indicates that SVM-based classifiers are
better at classifying PSK and FSK patterns.

In summary, to realize AMC of satellite laser commu-
nication in ground-to-satellite/satellite-to-ground links,
a modulation classification method in combination with
the partition-fractal method and SVM learning method
is proposed that extracts and trains constellation diagram
features. From simulation results, application of the pro-
posed methodology using the partition-fractal method and
SVM learning for no prior recognition of the modulation
mode is feasible, and the classifier can achieve more
than 98% accuracy when the SNR is more than 8 dB, es-
pecially when in BPSK and QASK modes, where the clas-
sifier achieves 100% identification whatever the SNR
changes to.

Therefore, by adopting the proposed method, we
achieve AMC. This method does not limit the type of sig-
nal modulation for strong scalability and continues to
learn in the case of an increased modulation mode to
achieve more modulation mode identification. Future re-
search is considered to be carried out from two aspects: the
first is to realize the modulation format identification of
multi-carrier modulation signals in combination with fea-
ture extraction and machine learning to solve the identi-
fication problem in this field; the second is to realize the
modulation format identification from the perspective of
deep learning, such as convolutional neural network
(CNN). The research has certain theoretical significance
and application value for realizing AMC in satellite com-
munication fields.

This work was supported in part by the National Natu-
ral Science Foundation of China (NSFC) (Nos. 61675033,
61835002, 61727817, and 61675232).
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