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Nonlocal correlations observed from entangled quantum particles imply the existence of intrinsic randomness.
Normally, locally projective measurements performed on a two-qubit entangled state can only certify one-bit
randomness at most, while non-projective measurement can certify more randomness with the same quantum
resources. In this Letter, we carry out an experimental investigation on quantum randomness certification
through a symmetric informationally complete positive operator-valued measurement, which in principle
can certify the maximum randomness through an entangled qubit. We observe the quantum nonlocal correla-
tions that are close to the theoretical values. In the future, this work can provide a valuable reference for the
research on the limit of randomness certification.
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Quantum correlations are incompatible with any local de-
terminacy[1–4], and they can be used to certify intrinsic ran-
domness in device-independent ways, i.e., implementing
measurement on quantum entangled particles. Up to date,
the relationship between nonlocality and quantum ran-
domness has been explored by many groups, such as
device-independent quantum randomness number genera-
tor (DI-QRNG)[5,6], device-independent quantum random-
ness amplification[7,8], and device-independent quantum
key distribution[9,10]. For DI-QRNGs, the observed nonlocal
correlations guarantee the randomness of the generated
measurement outcomes, and the amount of quantum ran-
domness can be quantified through the violation of differ-
ent Bell inequalities, e.g., Clauser–Horne–Shimony–Holt
(CHSH) inequality[11,12], the chained Bell inequality[13],
and Mermin inequality[14,15].
In order to give security proofs for a device-independent

randomness generation protocol, the normal way is to
assume that an additional observer exists, hereafter called
Eve, who has partial access to the quantum state and
possesses the ability to predict the measurement outcomes
under the framework of quantum mechanics. Denote Pg

as the upper bound of the guessing probability, i.e., Eve
can correctly predict the measurement results. The
value of Pg can be calculated through either numerical
derivation methods or by solving optimization prob-
lems. In a CHSH experiment introduced in Ref. [5], the
local guessing probability Pgða; ajx̄;EÞ, which means
Eve knows one of Alice’s (A) measurement outcomes a,
bounded by

Pgða; ajx̄;EÞ ≤
1
2
þ 1
2

��������������
2−

I 2

4

r
ð1Þ

in terms of the CHSH inequality I ,

I ¼ E1;2 þ E1;2 þ E2;1 − E2;2: (2)

Ex;y is the expectation value of the product of outcomes
when Alice and Bob perform the measurement setting x
and y individually. When the measurement bases are se-
lected properly, the maximum quantum violation of
CHSH inequality can reach 2

���
2

p
. Therefore, the upper

bound of the guessing probability is 1/2, indicating
that only one-bit randomness is certified in a device-
independent way. Beyond the CHSH scenario, Bell experi-
ments based on non-projective measurements have shown
some merits to generate more than one-bit randomness.
Recently, Andersson et al. proved that a symmetric infor-
mationally complete positive operator-valued measure-
ment (SIC-POVM) can be used for the certification of
two random bits at most[16]. This scheme can be seen as
the optimal randomness certification from a two-qubit
maximally entangled state.

Here, we report an experimental implementation of
randomness certification based on SIC-POVM. Firstly,
we experimentally observe the violation of Gisin’s elegant
Bell inequality (EBI) with a value of 6.8021 ± 0.0825
through a non-collinear type-II beam-like spontaneous
parametric down-conversion (SPDC) source[17,18]. Secondly,
we use the linear optical system (five-step quantum walks)
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to implement an SIC-POVM[19,20]. In our experiment,
SIC-POVM is certified in a device-independent way.
Our experimental results show that the probabilities of
the four outcomes of SIC-POVM are closest to the theo-
retical predictions. The average error of those probabilities
is about 0.0057. In the future, we can use the semi-definite
programming (SDP)[21] method in the Navascués–Pironio–
Acín (NPA) hierarchy[22] to calculate the amount of
randomness from the observed quantum correlations.
Therefore, our present work can provide a valuable refer-
ence for randomness certification with SIC-POVM.
The schematic diagram of standard Bell experiments is

shown in Fig. 1. In this system, Alice, Bob, and Eve share a
tripartite quantum state jΨABEi on a Hilbert space HA ⊗
HB ⊗ HE of arbitrary dimensions. Then Alice and Bob
each locally chooses a measurement setting (x or y) and
obtains a corresponding measurement outcome (a or b).
The aim of Eve is to be able to guess one or more of
the outcomes from Alice’s or Bob’s measurement results.
In this case, the joint correlations are summarized by a
conditional probability,

Pða; bjx; yÞ ¼
D
ΨABEjMA

ajx ⊗ MB
bjy ⊗ ME

e jΨABE

E
; (3)

where MA
ajx denotes the measurement operator associated

with the measurement outcome a when Alice performs the
measurement setting x, and, similarly, we define Bob’s
and Eve’s measurement operators MB

bjy and ME
e , respec-

tively. The local guessing probability associated with
Eve’s guess is consistent with Alice’s outcome a,

Pgða;ajx̄;EÞ ¼maxQ
X
a

D
ΨABEjMA

ajx ⊗MB
bjy ⊗ME

e jΨABE

E
;

(4)

where Q is all possible quantum realizations, described
by quantum state jΨABEi as well as measurements
MA

ajx , M
B
bjy, and ME

e , and compatible with the observed

quantum correlations Pða; bjx; yÞ. The randomness of
measurement outcomes can be quantified by the min-
entropy Hmin ¼ −log2½Pgða; ajx̄;EÞ], which is a function
of local guessing probability.

Here, we study the randomness certification based on
an EBI and an SIC-POVM. In this scheme, Alice performs
three projective measurement settings (x ¼ 1; 2; 3) and a
four-outcome POVM (x ¼ 4), and Bob performs four pro-
jective measurement settings (y ¼ 1; 2; 3; 4). The EBI is
defined as

S ¼ E1;1 þ E1;2 − E1;3 − E1;4 þ E2;1 − E2;2 þ E2;3

− E2;4 þ E3;1 − E3;2 − E3;3 þ E3;4 ≤ 6. (5)

The maximum quantum violation of EBI is S ¼ 4
���
3

p
,

approximately equal to 6.9282. The local guessing proba-
bility of Eve is

G ¼ maxE
X
a

Pgða; ajx ¼ 4;EÞ; ð6Þ

where Pgða; ajx ¼ 4;EÞ is the probability that Eve makes
a correct guess in consideration of Alice’s measurements
A4 and Eve’s measurements E. By maximizing all four-
outcome POVMs, the local guessing probability G can
reach 1/4; then, two-bit randomness can be certified. Ac-
cording to the proof in Ref. [16], the measurement A4

should be an extremal four-outcome SIC-POVMwhose el-
ements correspond to the four linearly independent unit
rank projectors:

A1j4 ¼
1
4

�
I −

1���
3

p ðZ þ X þ Y Þ
�
;

A2j4 ¼
1
4

�
I −

1���
3

p ðZ − X þ Y Þ
�
;

A3j4 ¼
1
4

�
I þ 1���

3
p ðZ − X þ Y Þ

�
;

A4j4 ¼
1
4

�
I þ 1���

3
p ðZ þ X − Y Þ

�
; (7)

where X ; Y ; Z are Pauli operators, and I is the identity
matrix. The elements of A4 are anti-aligned with the four
projective measurements on Bob’s side, and thus all prob-
abilities Pða ¼ i; b ¼ þ1jx ¼ 4; y ¼ iÞ are zero. Com-
bined with the maximum violation of EBI, this scheme
can certify two-bit randomness. Below we report the ex-
perimental verification of this scheme through a linear op-
tical system.

Fig. 1. Standard randomness certification scenario in device-
independent ways. An entangled source, two measurement sta-
tions, Alice and Bob, and an additional observer, Eve. The source
simultaneously emits particles to two measurement stations,
Alice and Bob. Each of them randomly performs the local mea-
surement setting x or y and obtains outcome a or b, respectively.
The observed correlation is represented by the conditional prob-
ability Pða; bjx; yÞ. From the perspective of security, we will as-
sume that Eve might be able to guess the outcomes of Alice’s/
Bob’s measurement.
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As shown in Fig. 2, our experimental setup mainly
consists of three parts, the preparation of the maximally
entangled state, the non-projective measurement device
in Alice’s side, and the projective measurement device
in Bob’s side. Firstly, in order to obtain higher visibility,
a non-collinear type-II beam-like SPDC source is used
to generate maximally entangled state jΨABi¼
ðjHHi− jVV iÞ∕ ���

2
p

, where H and V denote horizontal
and vertical polarization, respectively. A mode-locked
Ti:sapphire pulsed laser with a pulse duration time of
100 fs and a central wavelength of 780 nm is frequency-
doubled into ultraviolet pulses at 390 nm by a β-barium
borate (BBO) crystal cut for collinear type-I phase-
matching. Then, the resulting 390 nm laser is pumped
on a sandwich-type BBO crystal and generates the SPDC
photon pairs. After the SPDC process, a pair of LiNbO3
crystals is used for spatial compensation, and a pair
of YVO4 crystals is used for temporal compensation.
Accordingly, the down-conversion photon pairs from the
sandwich-type BBO crystal are indistinguishable both
spatially and temporally, and the polarization maximally
entangled state jΨABi is generated.
These photon pairs go through interference filters (IFs,

Semrock) with a 2 nm bandwidth and a central wave-
length at 780 nm and are then coupled into single-mode
fibers (SMFs) through a collimation lens (CL, Thorlabs).
The photons are then individually sent to Alice’s and
Bob’s measurement stations via SMFs. In the experimen-
tal setup, two pairs of beam displacers (BDs) (BD1 and
BD2, BD3 and BD4) form an interferometer with a visibil-
ity of 99.5% within 12 h. High visibility indicates good
parallelism of the optical axis between the two BDs.
To perform the non-projective measurement, five-step

quantum walks are composed to realize the SIC-POVM
[see Fig. 1(b)]. The four elements of SIC-POVM in
Ref. [19], named the initial SIC-POVM, are Πi ¼
1
2 ðjψ i

4ihψ i
4jÞ (i ¼ 1; 2; 3; 4), where

jψ1
4i ¼ jH i;

jψ2
4i ¼ −

���
1
3

r
jH i þ

���
2
3

r
jV i;

jψ3
4i ¼ −

���
1
3

r
jH i þ ei

2
3π

���
2
3

r
jV i;

jψ4
4i ¼ −

���
1
3

r
jH i þ e−i23π

���
2
3

r
jV i: (8)

In order to realize the SIC-POVM defined in Eq. (8),
called the target SIC-POVM, we use a set of unitary
transformations realized with the sequential placement
of quarter-wave plate (QWP1), half-wave plate (HWP1),
and QWP2. Through numerical simulations, we obtain
the angles of wave-plates for the setting x ¼ 4, e.g.,
θQ1 ¼ −2.5°, θH1 ¼ −45°, θQ2 ¼ 17.5°, θH2 ¼ 67.5°,
θH3 ¼ 67.5°, θH4 ¼ 17.5°, θQ3 ¼ −37.5°, and θH5 ¼ 60°.
The Bloch vectors of the initial and target SIC-POVMs
are shown in Fig. 3. To implement projective measure-
ments, HWP2 and HWP4 are set to 45°, and others (ex-
cluding QWP3 and HWP5) are set to 0°. The combination
of QWP3, HWP5, and BD5 can be used for projective mea-
surements, and their angles are determined by the specific
measurement setting of x (x ¼ 1; 2; 3). This setup can
switch the measurements between projective and non-
projective measurements by rotating the angles of internal

Fig. 2. Schematic of our experimental setup for randomness certification based on SIC-POVM. (a) A maximally entangled state
jΨABi ¼ ðjHHi− jVViÞ∕ ���

2
p

is generated with type-II SPDC sources pumped by pulsed lasers. (b) A four-outcome POVM is imple-
mented by employing five-step quantum walks. (c) Projective measurement is implemented with a QWP, an HWP, and a PBS. BBO,
β-barium borate crystal; BPF, band pass filter; C-BBO, sandwich-type BBO þ HWP þ BBO combination; QWP, quarter-
wave plate; HWP, half-wave plate; PBS, polarizing beam-splitter; LiNbO3, lithium niobate crystal, which is used for spatial compen-
sation; YVO4, yttrium orthovanadate crystal, which is used for temporal compensation; BD, beam displayer; CL, collimation lens.
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wave-plates, which are mounted on electrically controlled
rotation stages with high precision.
In Bob’s station, the projective measurement is made up

of the QWP, HWP, and polarizing beam splitter (PBS) in
sequence. The measurements of the setting y ¼ 1; 2; 3; 4
are projective measurements with two measurement out-
comes þ1 and −1. Photons in either Alice’s or Bob’s sta-
tion are performed with corresponding measurements and
then coupled into SMFs. Finally, they are detected by the
single-photon avalanche photodiodes (APDs, Excelitas
Technologies) with the typical photon detection efficiency
of about 63% at 780 nm. The detection results are recorded
by the high-resolution coincidence field-programmable
gate array electronics (Timetag, UQDevice).
During the data acquisition phase, a laser with a power

of 19 mW is applied. In order to reduce background noises,
we set the coincidence count windows at 1 ns, which also
results in a decreased accidental coincidence probability.
The obtained two-photon coincidence counting rate is
about 500 per second, and the recording period is set at
300 s. To be noted, the measurement data should be
corrected with the detection efficiencies of utilized APDs.
We perform the standard-state tomography process and

reconstruct the density matrix (see Fig. 4), getting the
state fidelity of 98.3% ± 0.7% compared with the maxi-
mally entangled states.

After executing a total of 48 two-photon projective
measurements on the generated entangled states, we can
calculate the value for the EBI, Sexp ¼ 6.8021� 0.0825.
The results of the EBI are listed out in Table 1. The ex-
perimental results are calculated with the photon counts
through the quantum-state tomography process. The
slight discrepancy between each experimental value and
the corresponding theoretical result is attributed to the
production of the non-ideal maximally entangled state.
The violation of the EBI indicates how much randomness
can be certified from the experimental data. We calculate
that the local guessing probability is 0.6179 based on
the violation of EBI, and 0.6946 bits of randomness can
be certified. Using the complete nonlocal correlations
Pða; bjx; yÞ ðx ∈ f1; 2; 3g and y ∈ f1; 2; 3; 4gÞ[20], the value
of the local guessing probability will increase a little. To
obtain an upper bound of randomness, we introduce the
SIC-POVM in Alice’s side (x ¼ 4). The probabilities of
the four outcomes of SIC-POVM in device-independent
certification are shown in Table 2. From the table, we

Fig. 3. Bloch vector of SIC-POVM. The tetrahedron formed by
the dotted black line represents the initial SIC-POVM, and the
tetrahedron formed by the solid red line represents the target
SIC-POVM.

Fig. 4. Tomography of the prepared maximally entangled state.
The real and imaginary parts are shown in the left and right pan-
els, respectively.

Table 1. Theoretical and Experimental Results of the
Elegant Bell Inequality

Expectation Ex;y Theory Experiment

E1;1 0.5774 0.5637ð�0.0076Þ
E1;2 0.5774 0.6047ð�0.0063Þ
E1;3 −0.5774 −0.5443ð�0.0070Þ
E1;4 −0.5774 −0.5674ð�0.0071Þ
E2;1 0.5774 0.4962ð�0.0067Þ
E2;2 −0.5774 −0.5091ð�0.0068Þ
E2;3 0.5774 0.6314ð�0.0070Þ
E2;4 −0.5774 −0.6219ð�0.0069Þ
E3;1 0.5774 0.6510ð�0.0067Þ
E3;2 −0.5774 −0.5960ð�0.0071Þ
E3;3 −0.5774 −0.5125ð�0.0065Þ
E3;4 0.5774 0.5155ð�0.0069Þ

Table 2. Theoretical and Experimental Values for the
Probabilities of the Four Outcomes of SIC-POVM

Pða ¼ i; b ¼ þ1jx ¼ 4; y ¼ iÞ Theory Experiment

Pð1;þ1j4; 1Þ 0 0.0037

Pð2;þ1j4; 2Þ 0 0.0040

Pð3;þ1j4; 3Þ 0 0.0081

Pð4;þ1j4; 4Þ 0 0.0070

Sum 0 0.0228
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can see that the experimental results are closest to the
theoretical predictions, and the sum of Pða ¼ i; b ¼
þ1jx ¼ 4; y ¼ iÞ is 0.0228. In the future, we can use the
SDP method in the NPA hierarchy[22,23] implemented in
the Python package Ncpol2spda to calculate the random-
ness with all of the observed correlations Pða; bjx; yÞ ðx ∈
f1; 2; 3; 4g and y ∈ f1; 2; 3; 4gÞ. The numerical analysis on
the relationship between randomness and noise sensitivity
can be obtained in Ref. [24]. To be noted, the obtained
randomness will be lower than two bits due to the random-
ness certification scheme based on SIC-POVM being
sensitive to noise.
In summary, we have carried out experimental random-

ness certification with an SIC-POVM, and this method
can obtain more than one-bit randomness from one
entangled qubit. Some works have shown that non-
projective measurements have more advantages than
projective measurements in randomness certifications.
Therefore, our present work can provide valuable referen-
ces for future design and implementation of randomness
certification and random number generators based on
SIC-POVM. In the future, our goal is to minimize exper-
imental errors to make a more accurate system and give a
specific amount of randomness. In addition, another chal-
lenging task is to verify the correlations without loopholes.
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