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An automated superpixels identification/mosaicking method is presented for the analysis of cone photoreceptor
cells with the use of adaptive optics scanning laser ophthalmoscope (AO-SLO) images. This is an image over-
segmentation method used for the identification and mosaicking of cone photoreceptor cells in AO-SLO images.
It includes image denoising, estimation of the cone photoreceptor cell number, superpixels segmentation, merg-
ing of superpixels, and final identification and mosaicking processing steps. The effectiveness of the presented
method was confirmed based on its comparison with a manual method in terms of precision, recall, and F1-score
of 77.3%, 95.2%, and 85.3%, respectively.
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Adaptive optics (AO) was invented and used in astronomi-
cal telescopes to correct optical aberrations induced by
atmospheric distortion[1]. Although the AO technology
was originally utilized in astronomical telescopes, it has
many applications[2,3]. As one of the most successful exam-
ples, it has already been extensively applied in retinal imag-
ing to correct ocular aberrations[4–10]. Taking advantage of
AO technology, AO scanning laser ophthalmoscopy (AO-
SLO) can perform in vivo retinal imaging at the cellular
level[6,11–13]. Thus, the AO-SLO images can be used for the
identification of cone photoreceptor cells and mosaicking
that is important for the understanding of the cellular nature
of retinal diseases, diagnosis and prognosis of these diseases,
and for the study of the treatment efficacy and ophthalmic
examinations. Although manual methods are the most
accurate and reliable ways for the identification of photo-
receptor cells and mosaicking, they are time-consuming.
Therefore, many research studies have aimed at the devel-
opment of semi-automated and automatic ways for the
identification of photoreceptor cells and mosaicking[14–23].
These methods consist of nonlearning-[14–19], supervised-
learning-[20–22], and unsupervised-learning-based methods[23].
Although supervised-learning-based methods[20–22] achieve
photoreceptor cell identification and mosaicking perfor-
mances with high accuracies, they still require a lot of labeled
data provided by manual methods for supervision purposes.
Moreover, this also consumes human labor and time.
Ren and Malik introduced in 2003 a segmentation

method without supervision, whereby the superpixels

algorithm groups pixels according to their brightness lev-
els and their relationships with their neighbors[24]. One of
its implementation variants without supervision is known
as simple linear iterative clustering (SLIC)[25] and is exten-
sively used in the area of biomedical image processing[26–28].

In this study, we introduce for the first time, to the best
of our knowledge, a superpixels method for the identifica-
tion of cone photoreceptor cells and mosaicking for AO-
SLO images. Specifically, the SLIC method, which is a
superpixels method without supervision, is adopted as
an image oversegmentation method at the initial stage
of the identification of cone photoreceptor cells and mo-
saicking. Based on superpixels segmentation and super-
pixels merging, the final identification and mosaic
patterns were generated, and the effectiveness of our
method was confirmed. To verify our method, we com-
pared our results with those obtained with a manual iden-
tification approach.

We describe our automated image processing procedure
for photoreceptor cell identification and mosaicking as fol-
lows. The flow diagram of the algorithm used is shown in
Fig. 1. The processing included five steps: (1) image
denoising, (2) cone photoreceptor cell number estimation,
(3) superpixels segmentation, (4) superpixels merging,
and (5) final identification and mosaicking pattern gener-
ation. In the first step, the AO-SLO image was denoised
by averaging multiple registered images[29]. In the second
step, the total number of cone photoreceptor cells in the
image was estimated with the use of the modal image
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spacing (Yellott’s ring)[17,30]. In the third step, the image
was segmented by the SLIC superpixels algorithm[25]. In
the fourth step, the superpixels whose relative centroid
distances were less than the diameter of the cone photo-
receptor cell were merged in a single superpixel. In the fi-
nal step, cone photoreceptor cells were identified, and
their mosaic image was generated.
Although the AO-SLO has high imaging resolution ow-

ing to the correction of optical aberration, its signal-to-
noise ratio (SNR) is low. To improve the image quality,
the enhancement of SNR is highly desired. To reliably
denoise the AO-SLO images, we first registered the AO-
SLO images and then averaged them with the optical-
flow-based method proposed in Ref. [29]. In this method,
the AO-SLO images were accurately registered by the op-
tical flow registration method that possesses a large num-
ber of registration degrees-of-freedom[29]. An example of
image denoising using a representative image patch is
shown in Fig. 2. As shown in the figure, the noise was sig-
nificantly suppressed after the denoising. This confirmed
the effectiveness of the denoising method in Ref. [29].
To utilize the superpixels segmentation of SLIC[25], we

needed to determine the approximate number of required
superpixels that constitute a mandatory input of SLIC
segmentation. This number was calculated based on the
estimated number of cone photoreceptor cells in the im-
age. Accordingly, we estimated the total number of cone
photoreceptor cells in the image based on the image modal
spacing (Yellott’s ring)[17,30]. Firstly, the denoised image
was transformed in the frequency domain with the use
of the discrete Fourier transform (DFT), and a log10
transformation was applied to the power values of the

Fourier transformed image[30], as shown in Fig. 3(a). This
resulted in a frequency-domain image with a circular band
that corresponded to the spatial frequency of the cone cells
in the original image[30], as shown in Fig. 3(b). Secondly,
eighteen slices radiating from the center were selected
at 20° intervals around the clock and then averaged to ob-
tain the blue curve in Fig. 3(c). Thirdly, the underlying
distribution was estimated with the least-squares fit of
the data with the sum of two exponentials[30], as shown
by the curve highlighted in red in Fig. 3(c). The subtrac-
tion of the fitted curve from the actual data [blue curve in
Fig. 3(c)][30] is shown in Fig. 3(d). Finally, the highest peak
location, as shown by the line highlighted in magenta in
Fig. 3(d) and corresponding to the dashed line highlighted
in magenta in Fig. 3(b), was regarded as the region that
corresponded to the spatial frequency of the cone photo-
receptor cells. Accordingly, the spatial frequency and
estimated number of cone photoreceptor cells were

Fig. 1. Diagram depicting the image processing of the proposed
algorithmic steps.

Fig. 2. Example of image denoising: (a) before denoising and
(b) after denoising.

Fig. 3. Cone photoreceptor cell number estimation: (a) denoised
image, (b) power of discrete Fourier transform (DFT) of a log10
compressed, (c) averaged slice of (b), fitted curve in red, and
(d) subtraction outcome of fitted curve (highlighted in red) from
the blue curve in (c).
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calculated according to this spatial frequency. By this
means, the estimated cone photoreceptor cells density
of image shown in Fig. 3 is around 27,171 cones/mm2,
which is in the range of cone densities seen in healthy eyes
by the classic histological analyses[31].
To achieve a fine segmentation of cone photoreceptor

cells, we magnified the denoised image four times iso-
tropically with bicubic interpolation before SLIC super-
pixels segmentation. For the preparation of the SLIC
superpixels segmentation, we calculated the approximate
superpixels number that was expected to be required
based on the estimated number of cone photoreceptor cells
in the image. Because the image included some of the in-
terstitial space, we set empirically the approximate num-
ber of superpixels that was expected to be created to 1.2
times the estimated number of cone photoreceptor cells in
the image. By inputting the magnified and denoised image
and the approximate superpixels number expected to be
created, we performed SLIC segmentation[25] on magnified
denoised images. An example of SLIC superpixels segmen-
tation with a representative image patch is shown in Fig. 4.
As shown in the figure, the photoreceptor cells in the
denoised image are oversegmented.
To partially solve the oversegmentation problem men-

tioned earlier, the superpixels, whose relative centroid dis-
tances are less than the diameter of the cone photoreceptor
cells, were merged in a single superpixel. The first step in-
volved the generation of the centroids of all the superpixels
based on the averaging of the location coordinates inside
the superpixels. In the second step, we merged the super-
pixels, whose relative centroid distances were less than the
diameters of the cone photoreceptor cells (12 pixels length
in our magnified and denoised images) in a single super-
pixel, as shown in Fig. 5. The first step and second step
were performed in an iterative manner until no more
superpixels were merged. An example of the superpixels
merging process with a representative image patch is
shown in Fig. 6. As shown, the oversegmentation problem
in Fig. 4 was partially solved.
In the cell identification process, we need to distinguish

superpixels that contain photoreceptor cells from those
that contained interstitial space. First, gamma correction
(gamma ¼ 0.5) was applied to the magnified and denoised

image. Secondly, superpixels whose mean intensity values
were higher than the threshold were regarded as superpix-
els that contained photoreceptor cells:

superpixel intensities > whole image intensities− 0.8

× σwhole image intensities; (1)

where “–––––” is arithmetic mean value operator, and σ is
the standard deviation. By using the superpixels segmen-
tation and photoreceptor cell identification outcomes, a
mosaic image was created based on the estimation of
the average value of the intensity in each photoreceptor
cell area, and the color of the superpixels containing inter-
stitial space is set to black.

An AO-SLO with a 30 Hz imaging rate was used for im-
aging the posterior parts of the eyes. The field-of-view
(FOV) on the human retina was 1.5°, and the frame size
was approximately 512 × 449 pixels. Thus, a transverse
area of approximately 445 μm× 445 μm was scanned
based on the assumption of a focal length of 17 mm for
the human eye. The details of the system are described
in Ref. [32]. Drops of tropicamide (1%) and phenylephrine
hydrochloride (2.5%) were administered to dilate the
pupil to a diameter in the range of 6–8mm. Light exposure
adhered to the maximum permissible exposure limits set
by the American National Standards Institute[33] at
all times.

The typical computational time of fully automated
processing of 100 × 100 pixels image is 49.71 s for image
denoising, 0.78 s for photoreceptor cells number estima-
tion, 1.06 s for superpixels segmentation, 0.31 s for super-
pixels mergence, and 1.83 s for identification and
mosaicking. The computational time was examined with

Fig. 4. Simple linear iterative clustering (SLIC) superpixels seg-
mentation: (a) original image patch and (b) segmented image
with oversegmentation.

Fig. 5. Superpixels merging process.

Fig. 6. Example of superpixels merging outcome: (a) before
merging and (b) after merging.
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an Intel Core i5-9400 CPU operating at 2.90 GHz,
NVIDIA GeForce GTX 1660 Ti graphic card, and
16.0 GB RAM, and the processing program was written
in MATLAB (64-bit) and CUDA 10.0.
To evaluate the effectiveness of our method, five eyes

from five healthy subjects were measured near the centers
of their foveae. Our method successfully identified and
segmented these five datasets, and the overall precision,
recall, and F1-score are listed in Table 1. Listed outcomes
regarded the manual identification as the ground truth.
As shown in Table 1, recall is much higher than precision.
This is due to the oversegmentation property of superpix-
els segmentation.
To test the performance of our method in different

styles of images, four examples containing input AO-
SLO images [Fig. 7(a)], images showing the identified cell
and segmented image [Fig. 7(b)], and cell mosaic images
[Fig. 7(c)] are presented in Fig. 7. The first, second, and
third examples taken from different locations of a healthy
retina, whose estimated cone photoreceptor cells densities
are around 45,164, 32,846, and 25,359 cones/mm2, respec-
tively, are shown in the top three rows in Fig. 7. The bot-
tom row in Fig. 7 shows an example and processed results
of an AO-SLO image with diabetic retinopathy[34]. As
shown in Fig. 7, our algorithm provided more or less
accurate results for the healthy retina, but not for the
pathological retina due to the highly irregular distribu-
tions of cone photoreceptor cells.
Owing to the oversegmentation property of superpixels

segmentation, our current method is associated with a
low-precision and high-recall rate. One important future
improvement is the identification of a good algorithm that
will further remove the superpixels associated with inter-
stitial spaces with a minimum loss of superpixels that con-
currently contain photoreceptor cells. As shown in the
bottom row of Fig. 7, our current method cannot provide
accurate results for the pathological eye. Thus, another
important future improvement is modifying the current
algorithm to achieve highly accurate processing for patho-
logical eyes.
In this study, an automated method for identification

and mosaicking of cone photoreceptor cells was proposed.
The superpixels method, which is an image oversegmenta-
tion method, is used for identification and mosaicking of
cone photoreceptor cells in an AO-SLO image. By showing
the superpixels segmentation, superpixels mergence, and

final identification and mosaicking generation, the effec-
tiveness of our method was confirmed. To verify our
method, we compared our identification results with those
of manual identification, which indicated that the preci-
sion, recall, and F1-score of identification were 77.3%,
95.2%, and 85.3%, respectively.
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