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For fluorescence molecular tomography (FMT), image quality could be improved by incorporating a sparsity
constraint. The L1 norm regularization method has been proven better than the L2 norm, like Tikhonov regu-
larization. However, the Tikhonov method was found capable of achieving a similar quality at a high iteration
cost by adopting a zeroing strategy. By studying the reason, a Tikhonov-regularization-based projecting sparsity
pursuit method was proposed that reduces the iterations significantly and achieves good image quality. It was
proved in phantom experiments through time-domain FMT that the method could obtain higher accuracy
and less oversparsity and is more applicable for heterogeneous-target reconstruction, compared with several
regularization methods implemented in this Letter.
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Fluorescence molecular tomography (FMT) based on
fluorochrome emission is capable of detecting in-vivo
biological activities[1] and it is a sensitive functional imag-
ing method that could quantitate fluorochrome concentra-
tions at femtomolar levels[2]. However, due to its limited
penetration in biological tissues, there are not many clini-
cal applications of FMT but instead extensive applications
in drug development[3,4] and cancer studies like the tumor-
igenicity study of glioblastoma xenografts in immunodefi-
cient mice[5]. But it may be applied to imaging of the
human wrist like in photoacoustic tomography[6].
Time-domain (TD) FMT utilizing pulsed excitation

sources is one of the three approaches in FMT while
the other two are continuous-wave (CW) FMT utilizing
steady excitation sources and frequency-domain (FD)
FMT utilizing modulated excitation sources. Fluorescence
yield and fluorescence lifetime are the two primary param-
eters while lifetime is proved an excellent probe for local
micro-environmental sensing[7]. Simultaneously recovering
the fluorescent yield and lifetime distributions is only
possible in TD-FMT and there are methods developed
for that purpose[8,9]. Moreover, only for TD-FMT, it is
possible to use early photons to achieve higher spatial
resolution and stability[10,11].
Because of the strong scattering of the light in biological

tissues, the reconstruction of FMT would be extremely
ill-conditioned, limiting the quality of the reconstructed
images. To improve the image quality, a conventional
way is to incorporate a sparsity constraint in the inverse
problem, adopting regularization methods such as Tikho-
nov regularization and L1-norm regularization. Although
it is straightforward to utilize Lp-norm (0 ≤ p < 1) regu-
larization, the non-convex Lp-norm regularization could
not be directly used in FMT reconstruction. But by

applying a certain strategy, non-convex Lp-norm regulari-
zation could be solved by transferring into L1-norm to
achieve better sparsity[12–14]. Among these, Tikhonov regu-
larization is widely used and can be easily solved by iter-
ative algorithms, while its solution is usually not sparse
enough. However, according to our previous work[15], with
a large number of iterations, an iterative Tikhonov regu-
larization method that projects negative values to zero in
each iteration could achieve sparse reconstruction results
not worse than other regularization methods.

By studying how zeroing strategy achieves sparsity in
the solutions, in this Letter, a Tikhonov-regularization-
based projecting sparsity pursuit method (PrSP-Tk) is
proposed that can achieve a better image quality than
the Tikhonov regularization method with zeroing strategy
(zeroing-Tk) with much fewer iterations. In this case, the
method could achieve both good image quality and effi-
ciency, making it a practical method for TD-FMT com-
pared with other conventional regularization methods.

For TD-FMT, the forward model was obtained through
the telegrapher equation based on the finite element
method (FEM)[16]. To reconstruct the fluorescent yield,
the inverse problem could be formulized by a method based
on the first-order derivative of the measurement data,
i.e., the slope of early photon tomography (s-EPT)[15], as
the following equation

ASX ¼ YS ; (1)

where X denotes the fluorescence distribution. YS is the
slope of the time-resolved measurement data at a particular
time. AS is the matrix derived from the forward model cor-
responding toYS . s-EPT isproved tobe able toachievegood
reconstructed image quality[15]. Therefore, the simulations
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and the phantom experiments in this Letter were recon-
structed based on this method.
To illustrate how zeroing-Tk functions, a three-

dimensional (3D) example was provided to show how the
method approaches the sparse solution. The 3D example
could be shown as

Ax ¼ T ; (2)

where A ∈ Rm×3 is the coefficient matrix and m is the
number of measurements; m ¼ 1 or 2 because the inverse
problem of FMT is typically underdetermined. x ∈ R3

denotes the solution, whose true value is set to be sparse
so that only one element is positive and the other two are
zeros. T ∈ Rm denotes the measurements.
As shown in Figs. 1(a) and 1(b), if m ¼ 1, the solution

space of x would be a plane and if m ¼ 2, the solution
space would be a line constrained by two planes. The
systems are solved by zeroing-Tk based on an iterative
Newton algorithm and an initial point x0 ¼ ð0; 0; 0Þ.
In case of m ¼ 1, as shown in Fig. 1(a), the red arrows

denote the path in the non-negative space for the zeroing-
Tk, while the black arrows denote the path of points in the
solution space. The points are projected between the
solution space and the coordinate plane and approach
the intersection of the two planes. It illustrates how
zeroing-Tk achieves sparsity. Meanwhile, it can also be
seen that paths in both the coordinate plane and the
solution plane are linear. In the case of m ¼ 2, as shown
in Fig. 1(b), the points are projected between the solution

line and the coordinate planes and, except for the first
point, both paths are also linear, which agrees with the
case of m ¼ 1. In conclusion, it could be assumed that, for
the inverse problem of FMT, paths at the end of the iter-
ations of zeroing-Tk are approximately linear.

To demonstrate the assumption, a general case is
described as

Wx ¼ Φ (3)

where W ∈ Rm×n is the coefficient matrix, and the
system is typically underdetermined (i.e., m < n). x ∈
Rn denotes the distribution of the fluorescence. Φ ∈ Rm

denotes the measurements collected on the surface of the
subjects.

Zeroing-Tk can be described as the following steps:
1) iterative Newton step projecting x0 into x1 in the

solution space: x1 ¼ x0 −WT ðWWT Þ−1ðWx0 −ΦÞ;
2) zeroing step that is equivalent to projecting x1 from

the solution space into a hyperspace determined by a
matrix E ∈ Rp×n, p < n, while the hyperspace is con-
strained by certain coordinate planes of the n-dimen-
sional space: x2 ¼ maxðx1; 0Þ ¼ x1 − ET ðEET Þ−1Ex1.

Let the problem be simplified to Wx ¼ 0, Ex ¼ 0,
WWT ¼ I , EET ¼ I without losing generality. At the
end of the iterations, empirically, the hyperspace deter-
mined by E would be almost the same. Furthermore, as-
sume that the initial point satisfies Wx0 ¼ 0. Then apply
the zeroing step and the Newton algorithm step, x2 ¼ x1−
WTWx1 ¼ x0−ETEx0−WTWx0þWTWETEx0. Then
the direction vector from x0 to x2 is x2 − x0 ¼
ðWTWET − ET ÞEx0. It could be derived that x4−
x2 ¼ ðWTWET − ET ÞEx2, where Ex2¼EWTWETEx0.

Let H ¼ EWTWET ∈ Rp×p. Assume that matrix H
has r distinct eigenvalues λ1 > λ2 > : : : > λr . Let
Ex0 ¼

Pr
i¼1 yi þ z, where yi ; i ¼ 1; : : : ; r denotes one of

the eigenvectors corresponding to λi , and z is a vector from
the null space of H . Then Ex2 ¼ EWTWET ðPr

i¼1 yi þ
zÞ ¼ λ1ðy1 þ

Pr
i¼2 λiyi∕λ1Þ and it could be derived that

Ex2k ¼ λ1
k ½y1 þ

Pr
i¼2 ðλi∕λ1Þkyi �, where x2k denotes the

point set in the solution space. If r ¼ 1, x2kþ4−

x2kþ2 ¼ λ1ðx2kþ2 − x2kÞ; k ¼ 1; 2; : : : , which means at the
end of the iterations the path of points in the solution
space is linear. On the other hand, if r > 1, because
λ2∕λ1 < 1, after certain number of iterations the path
in the solution space is approximately linear.

Because the last path in the solution space can be
considered approximately linear, iterations can be acceler-
ated by directly casting the point to the intersection of
the hyper line and the non-negative space, as shown in
Figs. 1(c) and 1(d), which can be described as

min t; s:t:ðx2k þ tΔxÞ >¼ 0;

xsparse ¼ x2k þ tΔx; if t exists; (4)

where x2k denotes the result of the kth iteration and
Δx is the updating direction of the path in the
solution space.

Fig. 1. Paths of 3D examples for (a)m ¼ 1 and (b)m ¼ 2 solved
by zeroing-Tk and paths for (c) m ¼ 1 and (d) m ¼ 2 solved by
PrSP-Tk. Red arrows: the path in the non-negative space. Dark
green dashed doted arrows: the projections of the Newton
algorithm projecting points into the solution space. Blue dashed
dotted arrows: the zeroing steps projecting points into non-
negative space from the solution space. Black arrows: the path
of points in the solution space. Mauve dashed arrows: the
accelerating step in the solution space.
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The proposed Tikhonov-regularization-based projec-
ting sparsity pursuit method is shown in Algorithm 1.
α is the regularization coefficient and usually set to
5 × 10−4[15]. βac is the acceleration coefficient and usually
set to 0.6, which controls the acceleration projecting step
size. γac is the slackness factor, applying slackness to the
inequation that determines the acceleration projecting
step size, typically set to 0.2. εsparse, typically set to be
0.1 to 1, is the sparsity error factor controlling when to
stop controlling the sparsity of the solution.
It is important to study the acceleration speed of the

proposed method. To simplify the problem, without re-
gard to the intersection angle of the solution space and
the non-negative space, empirically, the path is considered
linear if the tangential deviations are less than 20%
of the normal distance. Let ‖yi‖2 ¼ 1; i ¼ 1; : : : ; r, then
λ1 > λ2 > : : : > λr would determine the number of itera-
tions needed before the path could be considered linear.
Because the number of iterations for the system could
be considered as the maximum of the numbers determined
by each eigenvalue pair λ1 and λi ; i ¼ 2; : : : ; r, the prob-
lem could be simplified to a problem with two eigenvalues.
Simulations were carried out to study the simplified

problem. The largest eigenvalue λ1 was enumerated from
0.8 to 1 with an increment of 0.0025 and for each λ1, the
ratio λi∕λ1 was enumerated from 0 to 1 with an increment
of 0.005. As shown in Fig. 2(a), for most of the enumerated
eigenvalue pairs, it takes less than 100 iterations before
collineation. According to Fig. 2(b), for enumerated eigen-
value pairs λ1 ¼ 1 and λi ¼ 0.995, the number of iterations
is the largest and about 275. Therefore, in most cases, the
number of iterations before acceleration is less than 100
and it is highly relevant to λ1 of the system.
To evaluate the performance of the proposed method,

two sets of homogeneous-target phantom experiments
and one set of heterogeneous-target phantom experiments
were carried out. The experimental data were collected by
a photomultiplier-tube-based time-domain FMT system
previously developed in our laboratory[8]. The phantom

was rotated for 360 deg, with an increment of 20 deg
to obtain 18 projections for each set of the phantom
experiments. In each projection, 11 detectors were uni-
formly placed within a detecting field of view (FOV) of
220 deg. The excitation light was at 780 nm wavelength
while the collected emission light was at 840 nm. In the
homogeneous-target phantom experiments, two tubes
filled with 10 μM (1 M = 1 mol/L) indocyanine-green/
dimethyl-sulphoxide (ICG/DMSO) were buried symmet-
rically inside a 3 cm diameter phantom filled with 1% in-
tralipid. The inner diameters of the tubes were 4 mm and
their outer diameters were 5 mm. The edge-edge-distances
(EEDs) referring to the distance between the inner walls of
the two tubes were 1.5 mm and 3 mm. In the hetero-
geneous-target phantom experiments, the two tubes were
buried symmetrically with an EED of 4 mm, one of which
was filled with 10 μM ICG/DMSO while the other was
filled with 3 μM ICG/DMSO to yield half the fluorescence
intensity of the former one.

The experiments were then reconstructed based on the
s-EPT method combined with a restarted L1-regularized
nonlinear conjugate gradient descent algorithm (re-L1-
NCG)[17], an L1-norm regularization method based on
stagewise orthogonal matching pursuit (L1-StOMP)[18], an
iterative reweighted L1 regularization method (IRL1) that

Algorithm 1. Tikhonov-regularization-based projecting sparsity pursuit method.

Given x0, α, βac, γac, εsparse, W , kmax, k ¼ 1,

1) If m < n, then B ¼ WT ðWWT þ α× TraceðWWT ÞI Þ−1W ,

else B ¼ ðWTW þ α×TraceðWTW ÞI Þ−1WTW .

2) ∂xk ¼ BðΦ− xkÞ, εk ¼ logð∂xkT∂xkÞ,
xkþ0.5 ¼ xk þ ∂xk , Δxkþ0.5 ¼ xkþ0.5 − xk−0.5,

td ¼ max
�
−ðγac maxðxkþ0.5Þ þ xkþ0.5ðiÞÞ∕Δxkþ0.5ðiÞjΔxkþ0.5ðiÞ > 0

�
,

tu ¼ min
�
−
�
γac maxðxkþ0.5Þ þ xkþ0.5ðiÞ

�
∕Δxkþ0.5ðiÞjΔxkþ0.5ðiÞ < 0

�
.

If 0 < td < tu, then xkþ1 ¼ maxðxkþ0.5 þ βactu; 0Þ,
else xkþ1 ¼ maxðxkþ0.5; 0Þ.
k ¼ k þ 1.

Repeat step 2) until εk − εk−1 > εsparse or k reaches the maximum number of iterations.

Fig. 2. (a) Map of the number of iterations needed before the last
path could be considered linear for different eigenvalue pairs.
(b) The blue curve denotes the maximum number of iterations
for given λ1. The black curve denotes the corresponding eigen-
value λi for the maximum number of iterations.
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could approximate L0-norm regularization[12], zeroing-Tk,
and PrSP-Tk proposed in this Letter. The forward model of
s-EPT was generated through FEM, as mentioned above,
and then interpolated into uniform mesh with a size of
3 cm × 3 cm × 4 cm and discretization of 0.6 mm×
0.6 mm × 2 mm for the reconstruction.
The parameters were adjusted to obtain as good a re-

constructed image quality as possible, while keeping the
crosstalk between the two targets as low as possible. In
addition, the parameters of re-L1-NCG, L1-StOMP,
and IRL1 were adjusted based on parameters mentioned
in previous work[12,17,18]. The homogeneous-target phantom
experiments were reconstructed by all five methods. In
re-L1-NCG, the smooth parameter μ ¼ 1 × 10−2, the
regularization parameter λ ¼ 1 × 10−5, the inner maxi-
mum iterations kmax ¼ 100, and the restart iterations
krestart ¼ 50. In L1-StOMP, for an EED of 3 mm, the
threshold parameter α ¼ 0.82 and the maximum number
of the permissible coefficients Pmax ¼ 100; for an EED of
1.5 mm, α was adjusted to 0.86. In IRL1, the smoothing
parameter α ¼ 0.1, the maximum outer iterations kmax ¼
100, and the regularization parameters λ ¼ 1 × 10−3 and
μ ¼ 2 × 10−2. In zeroing-Tk, for an EED of 3 mm, the
iteration k ¼ 2000 and the regularization parameter
α ¼ 2 × 10−4; for an EED of 1.5 mm, k ¼ 1500, and
α ¼ 5 × 10−4. In PrSP-Tk, for an EED of 3 mm, the accel-
eration coefficient βac ¼ 0.6, the slackness factor γac ¼ 0.2,
the regularization parameter α ¼ 5 × 10−4, and the spar-
sity error factor εsparse ¼ 0.5; for an EED of 1.5 mm, εsparse
was adjusted to 0.8 to eliminate the crosstalk. Meanwhile,
in this Letter, the performances of IRL1 and PrSP-Tk
were further evaluated in the heterogeneous-target phan-
tom experiments. Because the performances of the other
three methods are adequately demonstrated through
the homogenous-target experiments, the reconstruction
results of these three methods in the heterogenous-target
experiments are not shown in this Letter. In IRL1,
the regularization parameters were adjusted so that
λ ¼ 1 × 10−4 and μ ¼ 2 × 10−3 for better results. In
PrSP-Tk, α and εsparse were adjusted to 1 × 10−4 and
0.2 to obtain better quality. All the methods were imple-
mented in MATLAB 2013 (MathWorks, Natick, MA)
and all reconstructions were performed on a personal
computer with Intel Core i7-6700 CPU @ 3.40 GHz and
16 Gbytes of RAM.
Except for re-L1-NCG and L1-StOMP, all the other

three methods obtain a good reconstructed image quality.
As can be seen in Figs. 3(a) and 4(a), in the reconstructed
images of re-L1-NCG, there is severe distortion in the
targets and the two targets could not be completely sep-
arated, which could also be demonstrated by the profiles
shown in Figs. 3(f) and 4(f). As for L1-StOMP, the recon-
structed images in Figs. 3(b) and 4(b) have an obvious
distortion in the targets while the locations of the targets
are inaccurate and the targets with an EED of 1.5 mm
are not completely separated. For IRL1, zeroing-Tk, and
the proposed PrSP-Tk, as shown in Figs. 3(c)–3(e) and
4(c)–4(e), the targets in the reconstructed images are

completely separated and accurately located. In addition,
PrSP-Tk avoids over-sparsity and achieves a better
relative-value accuracy in the reconstruction results com-
pared with IRL1, especially for an EED of 1.5 mm. When
compared with zeroing-Tk, the proposed method is also
better at accuracy, which could be illustrated by the
profiles in Figs. 3(f) and 4(f) and the Pearson correlation
coefficient (PCC) shown in Table 1. The PCC between the
reconstruction results and the true values shows the
similarity between them, and describes the reconstructed
image quality in one aspect. The PCCs of IRL1 are lower
than those of PrSP-Tk mainly for the sake of over-
sparsity, and for an EED of 1.5 mm, the PCC of IRL1 is
even lower than that of L1-StOMP. As shown in Table 1,
the computational time and number of iterations of PrSP-
Tk are largely reduced when compared with zeroing-Tk.
In addition, the theoretically predicted numbers of itera-
tions of the proposed method are 31 for EED of 3 mm
and 36 for EED of 1.5 mm in the homogenous-target

Fig. 3. Reconstruction results of the homogeneous experiment
with an EED of 3 mm on the excitation plane by using (a) re-
L1-NCG, (b) L1-StOMP, (c) IRL1, (d) zeroing-Tk, and
(e) PrSP-Tk, respectively. (f) Profiles along the yellow dashed
lines in (a)–(e).

Fig. 4. Reconstruction results of the homogeneous experiment
with an EED of 1.5 mm on the excitation plane by using
(a) re-L1-NCG, (b) L1-StOMP, (c) IRL1, (d) zeroing-Tk, and
(e) PrSP-Tk, respectively. (f) Profiles along the yellow dashed
lines in (a)–(e).
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phantom experiments, which agree with the actual num-
bers of iterations in the reconstruction. It experimentally
demonstrates the acceleration theory above. In summary,
PrSP-Tk achieves the best image quality among the meth-
ods implemented, with accurate target location, accurate
relative value, high spatial resolution, and good shape sim-
ilarity. Furthermore, the proposed method is efficient, with
the second shortest computational time that is as about one
third of that of the third shortest method.
As shown in Figs. 5(a) and 5(b), PrSP-Tk performs bet-

ter and achieves good image quality for the heterogeneous-
target experiments while IRL1 could not distinguish
the target with lower fluorescence intensity. Because the
target with lower fluorescence intensity yielded only half
the fluorescence intensity of the other target, it would
become more difficult to achieve good reconstructed image
quality. Nevertheless, it can be seen from the profiles in
Fig. 5(c) that PrSP-Tk obtains a high accuracy of the
relative value and high shape similarity. However, the
locations of the targets are not as accurate as in the homo-
geneous-target experiments, which results in a lower but
acceptable PCC, as shown in Table 2. It is reasonable to
surmise that it is caused by experimental noise because of
the same trend in the reconstruction result of IRL1. More
experiments are needed to demonstrate the underlying
reason. Meanwhile, in this case, the iteration of PrSP-
Tk has also been accelerated and its computational time
is still shorter than that of IRL1, which agrees with the
results of the homogenous-target phantom experiments.

In conclusion, based on the study about the Tikhonov
regularization method with zeroing strategy, the proposed
Tikhonov-regularization-based projecting sparsity pursuit
method reduces the iterations and computational cost,
and achieves image quality not worse than that of the
L1 norm or approximated L0 norm regularization meth-
ods. Moreover, the proposed method obtains a better im-
age quality than the Tikhonov regularization method with
zeroing strategy. The proposed method has a sufficiently
low computational cost while obtaining the best relative
value accuracy, the best location accuracy, and the best
shape similarity among the methods implemented in this
Letter for the homogeneous-target phantom experiments.
Furthermore, the method is proved applicable for hetero-
geneous-target reconstruction where the approximated L0
norm method has poor performance. Good image quality,
high efficiency, and wide application make the Tikhonov-
regularization-based projecting sparsity pursuit method a
practical method for TD-FMT reconstruction and prob-
ably for other approaches of FMT.

This work was supported by the National Natural Sci-
ence Foundation of China (Nos. 81561168023, 61871251,
and 61871022).
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