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Self-mixing interferometry (SMI) is an attractive sensing scheme that typically relies on mono-modal operation
of an employed laser diode. However, change in laser modality can occur due to change in operating conditions.
So, detection of occurrence of multi-modality in SMI signals is necessary to avoid erroneous metric measure-
ments. Typically, processing of multi-modal SMI signals is a difficult task due to the diverse and complex nature
of such signals. However, the proposed techniques can significantly ease this task by identifying the modal state
of SMI signals with 100% success rate so that interferometric fringes can be correctly interpreted for metric
sensing applications.
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Self-mixing interferometry (SMI) or optical feedback (OF)
interferometry[1,2] is actively researched for vibration,
angle[3], frequency[4], size[5], range-finding[6], topography[7],
and seismic applications[8] due to the simple, low-cost,
and miniaturized nature of self-mixing (SM) sensors. In or-
der to design low-cost SM sensors, usually commercial off
the shelf (COTS) laser diodes (LDs) are preferred. How-
ever, due to OF inside the active laser cavity, such low-cost
mono-modal LDs are prone to mode switching (as a func-
tion of operating conditions[9–11]), resulting in multi-modal
SM signals in which more than one laser mode undergoes
SM. As a consequence, each interferometric fringe can no
more be assumed to correspond to a remote displacement
of λ∕2 (where λ is the wavelength of the LD), because, in
case of bi-modal or tri-modal SM, an individual SM fringe
does not correspond to a displacement of λ∕2 anymore (see
Fig. 1)[9]. Multi-modal SM has been used to potentially in-
crease measurement resolution[10] as well as to measure free
spectral range of the laser[12]. However, any unidentified
switching of a mono-modal laser sensor to multi-modal
operation can cause any unidentified severe measurement
error due to incorrect fringe interpretation.
The objective of this Letter is to robustly identify the

occurrence of multi-modal SM signals so that an alert
can be raised to appropriately interpret SM fringe count
and/or SM operating conditions that can be changed (e.g.,
by changing the LD current[13] or amount of OF[14]) to re-
vert back to mono-modal SM operation[12,15], for which al-
gorithms exist yielding high accuracy measurements[16–20].
SM-based multi-modality is reported to occur due to

variation in parameters such as LD-to-target distance[21,22],
temperature[9], or LD current[10,13]. Measurement of laser
emission spectra confirmed the existence of multiple
laser modes undergoing an SM signal[9,13,23] for different

laser sources such as Fabry–Perot LD[21], quantum
cascade laser[23], and vertical-cavity surface-emitting laser
(VCSEL)[10].

Recently, a method based on an artificial neural net-
work was proposed to classify mono- and multi-modal
SM signals with a success rate of 98.75%[24]. However, this
neural-network-based approach requires hand-crafted fea-
ture engineering. Pertinent features (based on temporal
and spatial characteristics of SM fringes) are extracted
only after performing correct SM fringe detection, a task
which is difficult to achieve for noisy, experimental SM
signals even when only one mode undergoes SMI, as at-
tested by the use of advanced detection methods based
on Hilbert transform[25], customized wavelet transform[26],
double-derivative[27] and signal envelope tracking[28], etc.
However, in this Letter, the multi-modality of the SM

Fig. 1. Experimental (a), (b) multi- and (c) mono-modal SM sig-
nals acquired under different OF coupling and operating current
conditions based on the HL6501MGLD (I th ¼ 45 mA) with I oper
of (a), (c) 78 mA and (b) 82 mA.
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signal is identified without using robust fringe detection
by evaluating four different SM signal statistics under dif-
ferent noise, OF strength, amplitude of target vibration,
and laser modality conditions. Use of majority vote among
the four techniques has provided 100% identification
success rate.
Various mono- and multi-modal SM signals were

acquired by using two different LDs, L637P5 by Oclaro®

and HL6501MG by Hitachi®, one at a time. A polished
metallic ring (mounted on a mechanical shaker, SF-9324
by PASCO®) was used as the remote vibrating target. The
L637P5 LD has an operating wavelength λ0 of 637 nm and
threshold current I th of 20 mA, emitting 5 mW optical
power. The HL6501MG LD has λ0 of 650 nm and I th of
45 mA, providing 35 mW optical power. Each LD has a
built-in photodiode through which SM signals were
obtained. Different mono- and multi-modal SM signals
were acquired under varying OF and LD operating
current (I oper) conditions. Multi-modal SM signals were
observed to occur when both the OF coupling (by using
the focusing lens) and I oper∕I th (by using higher I oper)
well exceeded unity. Figures 1(a) and 1(b) present two
multi-modal SM signals based on the HL6501MG LD
with an I oper∕I th ratio of 78 mA∕45 mA ¼ 1.73 and
82 mA∕45 mA ¼ 1.82, respectively, under high OF cou-
pling. However, as OF coupling was reduced (by de-
focusing the lens), then the mono-modal signal occurred
even when I oper∕I th was 1.73 [see Fig. 1(c)]. A dataset of
60 SM signals (30 mono- and 30 multi-modal SM signals)
is used to verify the performance of the proposed tech-
niques using SM signal statistical parameters.
Each of the proposed four different techniques for

identification of SM multi-modality is detailed below.
The variance-based technique (VBT) is based on the

parameter varp‐diff , which is a measure of peak to peak
dynamic variation of an SM signal. Clearly, varp‐diff
should be generally greater for a multi-modal SM signal
due to composition of different modes producing dissimilar
multi-modal fringes, as opposed to a mono-modal signal in
which similar fringes occur (see Fig. 1). Consequently, a
larger variation in amplitude occurs in multi-modal
signals as compared to mono-modal signals.
However, to perform VBT on normalized SM signals,

two main phases are required: (1) customized local
maxima detection and (2) estimation and analysis of
varp‐diff . Customized local maxima detection is done by
the following steps, which are also presented in Fig. 2.
(1) First, inter-maxima separation (SMsep) is computed

by using auto-correlation of the SM signal. SMsep is
indicative of the distance in between two consecutive
maxima.

(2) Then, the mean value of the input SM signal, denoted
by SM, is computed.

(3) The input SM signal (having N and samples)
is divided into ‘n’ intervals by using n ¼
round ðN∕SMsepÞ.

(4) Then, the local maxima of each interval are
determined.

(5) Valleys (SM signal portions with a lower amplitude
around the local maxima) on the left (lv) and right
(rv) are determined for each local maximum of every
interval.

(6) Valley-less maxima are discarded, and maxima with
both valleys are retained.

(7) Finally, amplitude values of maxima (having both
valleys) are compared with SM, and maxima with
greater amplitude values are retained and considered
as genuine maxima, while those with lower amplitude
values are removed.

VBT second phase steps (see Fig. 3) are detailed below.
(1) Differentiation of amplitude values of detected

maxima (mxdiff ) is taken to determine peak to peak
dynamic.

(2) varp�diff is determined by taking a variance of mxdiff
values.

(3) A threshold value (thvr) of varp�diff is employed and
compared with the varp�diff value of the under-process
SM signal to determine the modality of the input sig-
nal. If thvr < varp�diff , then the input SM signal is
considered a multi-modal signal, else it is considered
a mono-modal signal. Note that this threshold (as well
as subsequent thresholds in other techniques) is set in
light of various simulation results obtained under
varying OF coupling, amplitude of target vibration,
and noise conditions as detailed ahead.

The kurtosis-based technique (KBT) is based on the
statistical parameter of kurtosis, which is indicative of a

Fig. 2. Flowchart of customized maxima detection technique
variations (varp�diff ).

Fig. 3. Flowchart of the variance-based technique (VBT).
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signal’s irregularity. Usually, the amplitude of multi-
modal SM signals is more irregular as compared to that
of mono-modal SM signals. Thus, the kurtosis value of
an SM signal, denoted by SMkur, can be used to extract
information about its modality, where

SMkur ¼
PN

i¼1 ðSMi − SMÞ4∕N
S4 : (1)

Here, S denotes the standard deviation value of the
input SM signal. A threshold value (thkur) is set (by using
simulation results) and is compared with SMkur. If
SMkur > thkur, then the input SM signal is considered
multi-modal, else it is considered a mono-modal SM signal.
Steps of KBT are shown in Fig. 4.
The skewness-based technique (SBT) uses the

statistical parameter of skewness, which is a measure of
asymmetry of the SM data around the sample mean.
Conventionally, mono-modal SM signals are evenly
distributed around the mean value. However, most com-
monly encountered multi-modal signals are not even
around the mean value. Thus, the skewness parameter
of an SM signal (denoted by SMskw) can also be useful
in classifying the modality of an SM signal:

SMskw ¼
PN

i¼1 ðSMi − SMÞ3∕N
S3 : (2)

Thus, SMskw is determined and is compared with the
corresponding threshold value of the skewness parameter
(thskw) to ascertain the modality of input SM signal. Steps
of this technique are also shown in Fig. 4.
The skewness–kurtosis-based technique (SKBT) is

based on the ratio (SMskur ¼ SMkur∕SMskw) of the
above-mentioned SM signal parameters. As both SMkur

and SMskw detailed above are good indicators of multi-
modality, their ratio (SMskur) is also investigated for
identifying multi-modality. [Note that to avoid division
by values of SMskw approaching zero, all values of
SMskw < 0.02 were set to 0.02 to plot SMskur in Fig. 5(d).]
The absolute value of SMskur is compared with the

employed threshold value (thskur). If SMskur < thskur, then
the under-process SM signal is considered multi-modal,
else it is considered mono-modal. Steps of SKBT are also
shown in Fig. 4.

Let us now discuss how the various threshold values,
used in each of the four presented techniques, were set
by performing simulations for a representative sample
of SM signals by using the SM model[12] under different
OF coupling (such as the frequently encountered weak
and moderate OF regime[1,2]), amplitude of target vibra-
tion in terms of λ0, and additive noise [resulting in different
signal to noise ratios (SNRs) of SM signals] conditions.
Evolution of different parameters with respect to C and
amplitude of target vibration in the absence of noise for
mono-modal operation can be observed from Fig. 5. It
can be observed from Fig. 5(a) that varp�diff is always
lower than 0.017 for mono-modal noiseless SM signals. In
Fig. 5(b), SMkur increases with C , which is expected, since
the more C increases the more asymmetric the SM fringes
become. Regarding SMskw [see Fig. 5(c)], for low C values
(close to one), SMskw is close to zero, as positive and neg-
ative fringes are similar. Then, as C increases, the

�
�SMskw

�
�

value tends to increase due to the increasing asymmetry
between the positive and negative fringes of the SM signal.

Furthermore, to ascertain the impact of additive noise
on the chosen parameters, simulations for the weak feed-
back regime (C ¼ 0.1) and moderate feedback regime
(C ¼ 4) are also performed (see Tables 1 and 2, respec-
tively). Two weak and moderate feedback regime SM sig-
nals under different noise conditions (SNR ¼ 10 dB and
SNR ¼ 40 dB) are graphically shown in Fig. 6 as well.
The value of C ¼ 4 is specifically chosen to perform noise
analysis, as it generally corresponds to the worst-case
statistical parameter values.

It can be observed from Table 1 and Fig. 6 that
the value of parameters such as varp‐diff is decreasing sig-
nificantly as SNR improves. Higher SNR values result in

Fig. 4. Steps of the kurtosis-based technique (KBT), skewness-
based technique (SBT), and skewness–kurtosis-based technique
(SKBT).

Fig. 5. Evolution of parameters with respect to C and target vi-
bration amplitude for noiseless mono-modal signal (a) varp�diff ,
(b) SMkur, (c) SMskw, and (d)

�
�SMskur

�
�.
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fewer local maxima generated by noise (and, thus, not
genuine fringes) to be wrongly considered as fringe. There-
fore, the calculation of varp‐diff will not take them into
account, and, hence, the varp‐diff value will decrease.

Conducting these simulations under different levels of
noise, amplitude of target vibration, and OF coupling
provides information about the expected range and
worst-case value of the proposed parameters, resulting
in extraction of different threshold values (see Table 3).

In order to determine the performance of the proposed
techniques, the experimental dataset was tested to iden-
tify the modality of these SM signals by using the thresh-
old values of Table 3. Results are presented in Table 4,
where Nmon andNmul indicate the number of tested mono-
and multi-modal SM signals, respectively. Likewise,
Nmon�Ti and Nmul�Ti indicate the number of truly identi-
fied mono- and multi-modal SM signals, respectively.
Furthermore, Nmon�Fi and Nmul�Fi are the number of SM
signals that are falsely identified as mono- and multi-
modal SM signals, respectively. N to�Ti represents the total
number of truly identified SM signals. In the last column,
Rs represents the overall success rate of the proposed
techniques.

An analysis of misidentified signals led to the observa-
tion that misidentification by the proposed techniques oc-
curred for different SM signals. So, majority voting (MV)
based on results of the four techniques was undertaken
(for each tested signal), resulting in a 100% success rate.
If a lower number of parameters are used for the sake of
reducing the complexity of the blind identification, then
Rs ¼ 95% if VBT is not used, while Rs ¼ 92% if only
VBT and SBT are used, inclusive of MV in both
cases. Some correctly identified mono- and multi-modal
experimental SM signals are graphically presented in
Figs. 7 and 8, respectively.

To conclude, an OF-based LD can provide a multi-
modal SM signal in place of the usually encountered
mono-modal SM signal because of mode-hopping caused
by a change in operating conditions, such as LD-to-target
distance. This can cause misinterpretation of the SM
fringe count, resulting in a drastic increase in metric mea-
surement error. To avoid this error, a continuous monitor-
ing of the SM signal is necessary, so that, as the SM signal
becomes multi-modal, it could be detected immediately
and possibly reverted back to mono-modal behavior
(e.g., by changing the LD current or OF strength). In this
Letter, different techniques based on SM signal statistics
are evaluated for future continuous monitoring of emis-
sion modality of low-cost LD-based SM sensors. These
proposed techniques have been successfully tested on ex-
perimentally acquired mono- and multi-modal SM signals

Fig. 6. Simulated mono-modal SM signals with SNRs of 10 dB
and 40 dB in the case of (a) weak feedback regime (C ¼ 0.1) and
(b) moderate feedback regime (C ¼ 4).

Table 1. Values of Statistical Parameters of Simulated
Normalized Mono-Modal SM Signals for Varying SNR
under Weak-Feedback Regime for C ¼ 0.1 and
Amplitude of 5λ0

Techs. Feats.
SNR

(10 dB)
SNR

(20 dB)
SNR

(30 dB)
SNR

(40 dB)

VBT varp‐diff 0.015 0.012 0.012 0.008

KBT SMkur 1.718 1.452 1.433 1.429

SBT SMskw 0.149 0.144 0.142 0.141

SKBT
�
�SMskur

�
� 11.458 10.053 9.821 9.510

Table 2. Values of Statistical Parameters of Simulated
Normalized Mono-Modal SM Signals for Varying SNRs
under Moderate-Feedback Regime (C ¼ 4) and
Amplitude of 5λ0

Techs. Feats.
SNR

(10 dB)
SNR

(20 dB)
SNR

(30 dB)
SNR

(40 dB)

VBT varp‐diff 0.016 0.011 0.007 0.006

KBT SMkur 2.267 2.253 2.099 2.007

SBT SMskw −0.345 −0.340 −0.326 −0.320

SKBT
�
�SMskur

�
� 6.777 6.627 6.162 6.103

Table 3. Extracted Threshold Values of Proposed
Statistical Parameters Based on Simulations on Mono-
Modal SM Signals under Varying Optical Feedback,
Vibration Amplitude, and Signal to Noise Ratio

VBT KBT SBT SKBT

Features varp‐diff SMkur SMskw jSMskurj
Threshold values 0.017 2.7 0.2 5
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with success rates of 85% (VBT), 75% (KBT), 91% (SBT),
and 93% (SKBT). Importantly, use of MV among the four
proposed techniques has provided 100% success rate of SM
modality identification.
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Table 4. Performance of Proposed Techniques by Testing Experimentally Acquired Dataset of 60 SM Signals

Techs. Nmon∕Nmul Nmon�Ti Nmul�Ti Nmon�Fi Nmul�Fi N to�Ti Rs∕%

VBT 30/30 30 21 9 0 51 85

KBT 30/30 24 21 9 6 45 75

SBT 30/30 29 26 4 1 55 91

SKBT 30/30 26 30 0 4 56 93

MV 30/30 30 30 0 0 100 100

Fig. 7. Correctly identified experimental mono-modal SM
signals.

Fig. 8. Correctly identified experimental (a) bi-modal and
(b) tri-modal SM signals.
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