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Coulomb potential may induce a significant angular offset to the two-dimensional photoelectron momentum
distributions for atoms subject to strong elliptically polarized laser fields. In the attoclock experiment, this
offset usually cannot be easily disentangled from the contribution of tunneling delay and poses a main obstacle
to the precise measurement of tunneling delay. Based on semiclassical calculations, here, we propose a method
to extract the equivalent temporal offset induced solely by Coulomb potential (TOCP) in an attoclock experi-
ment. Our calculations indicate that, at constant laser intensity, the TOCP shows distinctive wavelength
dependence laws for different model atoms, and the ratio of the target atom’s TOCP to that of H becomes
insensitive to wavelength and linearly proportional to (2Ip)−3/2, where Ip is the ionization potential of the target
atom. This wavelength and Ip dependence of TOCP can be further applied to extract the Coulomb potential
influence. Our work paves the way for an accurate measurement of the tunneling delay in the tunneling ion-
ization of atoms subject to intense elliptically polarized laser fields.
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The ultrafast dynamics of atoms and molecules subject
to intense laser fields have attracted a lot of attention
(see, e.g., Refs. [1–7]). One of the most attractive issues
in this field is the tunneling delay problem, i.e., the prob-
lem of whether tunneling of a particle through a barrier
takes a finite time, which has already been debated for
80 years[3]. The resolution of this problem is paramount
to comprehend the tunneling process itself, which is one
of the fundamental topics in quantum mechanics.
Several experimental procedures with temporal resolution
in the scale of attoseconds have been demonstrated to be
useful to measure the tunneling delay, such as attosecond
streaking[4,5], reconstruction of attosecond beating by in-
terference of two-photon transitions[6,7], and attoclock[8,9].
Among all the experimental schemes mentioned above,

attoclock[8,9] is the most intriguing one. This method relies
on the relationship between the tunneling time and the
rotating electric field vector of a strong elliptically polar-
ized (EP) laser field. Specifically, for atoms subject to the
EP laser field, the instant when the electron appears in the
continuum is mapped to the final angle of the momentum
vector in the polarization plane, which can be measured
experimentally. Based on the physical picture of the sim-
pleman model[10,11], the temporal resolution of an attoclock

can be determined by the angular frequency of the laser
field and also the angular momentum resolution of the
spectrometer employed, which may give rise to the tempo-
ral resolution in the scale of attoseconds, even for the rou-
tinely available femtosecond laser pulses. As well accepted,
compared to others, the most crucial advantage of the at-
toclock scheme is that the attosecond pulse is not necessary
any longer, which lowers the technical demand to a great
extent and makes this experimental procedure attractive.

On the other hand, the predictions of the simpleman
model cannot match the measurements well, because
the total ignorance of the Coulomb potential is not oper-
ative in the attoclock experiments. In a strong EP laser
field, if both the tunneling delay and the Coulomb poten-
tial effect are included, a significant rotation offset of the
calculated photoelectron momentum distribution (PMD)
can be identified compared to the results with only
tunneling delay influence considered. That is to say, the
Coulomb potential will induce an angular offset of the cal-
culated PMD, which is equivalent to a temporal offset in
the attoclock scheme. Moreover, the equivalent temporal
offset solely induced by the Coulomb potential (TOCP)
could be even larger than the one from the tunneling delay
(see, e.g., Ref. [9]). Unfortunately, until now, TOCP can
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only be determined from the numerical estimation based
on some approximations. However, it is very difficult to
accurately calculate the TOCP because some key ele-
ments, such as precise value of tunnel exit[12,13], and the in-
itial momentum distributions of photoelectron at the
tunneling exit[14–16], are also under hot debate. Therefore,
as one may expect, the reliability and temporal resolution
of an attoclock are limited, which may hinder the inves-
tigation of the issue of tunneling delay.
In fact, the consensus on whether there is a finite tun-

neling delay has not been achieved so far. In 2008, based
on the attoclock experimental results, Eckle et al.[9] placed
an upper limit of 34 as and an intensity-averaged upper
limit of 12 as on the tunneling delay in strong field ioniza-
tion of He. Several years later, Pfeiffer et al.[17] confirmed
vanishing tunneling delay time and demonstrated the im-
portance of inclusion of Stark shifts and multi-electron
effects. In 2015, Torlina et al.[18] employed an ab initio
numerical simulation method to numerically explore the
H atom subject to strong EP laser field with the
attoclock scheme, where optical tunneling of the valence
electron of a H atom is demonstrated to be instantaneous.
With the attoclock technique, a recent experiment on the
H atom by Sainadh et al.[19] has confirmed the argument
for instantaneous tunneling and identified the Coulomb
potential as the sole cause of the measured offset angle.
As discussed above, some works show that the tunneling
process is instantaneous, and no tunneling delay can be
revealed. In contrast, a finite tunneling delay has been
identified by other groups. In 2014, the refined attoclock
measurements of Landsman et al.[20] indicated a clear tun-
neling delay time for a large intensity range. Moreover,
recently, in an experimental work of Camus et al.[21], a
nonzero tunneling time delay has been presented by com-
paring the PMDs of Ar and Kr under identical experimen-
tal conditions. As discussed above, the issue of tunneling
delay is still an open question[22–26].
In this Letter, based on the semiclassical calculations, a

method is proposed to extract the TOCP in the attoclock
scheme, which could be significant to improve the resolu-
tion of the attoclock and meaningful to solve the problem
of tunneling delay. Our procedure relies on the systemati-
cal measurements of two-dimensional PMDs of the target
noble gas atoms subject to strong EP laser field at a series
of wavelengths for a fixed intensity. According to our cal-
culations, the TOCP depends sensitively on the laser
wavelength, especially in the regime of short wavelength,
while the ratio of the target atom’s TOCP to that of H
becomes insensitive to wavelength and linearly propor-
tional to ð2I pÞ−3∕2, where I p is the ionization potential
of the atom in question. Therefore, the deviation of TOCP
induced by the target atom can be obtained by comparing
the wavelength dependence of the TOCP to that of the
H atom, for which the TOCP can be measured experimen-
tally or calculated numerically with high accuracy. Note
that atomic units (ℏ ¼ me ¼ e ¼ 1) are used throughout
unless otherwise stated.

To explore the Coulomb potential effect on the ultrafast
dynamics of atoms subject to strong EP laser field, two
numerical methods are applied in our work. Firstly, the
basic idea of our procedure is demonstrated with the
simpleman model, where Coulomb potential is totally
ignored. Secondly, to investigate the influence of Coulomb
potential, we further employ the semiclassical methods,
where the three-dimensional photoelectron trajectories
can be calculated and analyzed.

The simpleman method applied in this work closely
follows the ones in the pioneer works[11,27]. The strong field
ionization process in an EP pulse can be split in two
distinct steps: firstly, the valence electron is injected into
the continuum at time t0 from the origin. Secondly, the
free electron propagates in the laser field, and the binding
potential is neglected. Here, we let the initial velocity of
the electron be zero, and the weight of each electron tra-
jectory is determined by the Ammosov–Delone–Krainov
(ADK) theory[28]. To simulate an ionization delay time
of Δt, the electron will stay at the origin until t0 þ Δt,
when it is released.

In the semiclassical calculation, we consider a target
atom with a H-like potential of

V ¼ −
Z eff

r
; ð1Þ

where Z eff ¼
��������
2I p

p
is the effective nuclear charge, and r

denotes the distance between the tunneled electron and
the parent ionic core[29]. It is assumed that the electron
is released from a bound state to a continuum through
tunneling[28,30], and the following dynamics of the tunnel
ionized electron is described by a classical Newtonian
equation[29,31–35]:

∂2r
∂t2

¼ −EðtÞ− ∇V ; ð2Þ

where EðtÞ ¼ ðExðtÞ; 0;EzðtÞÞ is the EP laser electric
field, ExðtÞ ¼ aðtÞ E0ε��������

1þε2
p sinωt, EzðtÞ ¼ aðtÞ E0��������

1þε2
p cosωt,

and E0 is the amplitude. The envelope function aðtÞ is
defined by

aðtÞ ¼
8<
:
sin2

�
πt
6T

�
; t ≤ 6T

0; t > 6T
; ð3Þ

where T is the laser pulse optical period.
To solve Eq. (2), the initial conditions of the tunneled

electron are necessary. In the parabolic coordinates, the
Schrödinger equation for a H-like atom in a laser field
can be expressed as[15]

∂2ϕ
∂η2

þ
�
−
I p
2
þ 1
2η

þ 1
4η2

þ 1
4
Eη

�
ϕ ¼ 0; ð4Þ
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where I p is the ionization potential. Therein, Eq. (4)
describes a tunneling process for an electron with energy
of − 1

4 I p within an effective potential of U ðηÞ,
i.e., U ðηÞ ¼− 1

4 I p, where UðηÞ ¼ −ð 14η þ 1
8η2 þ 1

8EηÞ. Thus,
the tunnel exit point η0 can be determined by solving the
equation of −ð 14η þ 1

8η2 þ 1
8EηÞ ¼ −

I p
4 .

In our calculation, the laser electric field is EP, which
could be more complicated than the linearly polarized
case. Following the procedure in Refs. [36,37], the EP la-
ser field is assumed to be a rotating linearly polarized
field. Thus, the initial conditions are obtained by intro-
ducing a rotating coordinate system, which are then
projected to the laboratory frame. With this procedure,
the initial positions of the tunnel ionized electron in the
rotating frame are x 00 ¼ y00 ¼ 0 and z 00 ¼ − 1

2 η0. Corre-
spondingly, the initial conditions in the laboratory frame
are x0 ¼ − 1

2 η0 sinfarctan½ε tanðωt0Þ�g, y0 ¼ 0, and z0 ¼
− 1

2 η0 cosfarctan½ε tanðωt0Þ�g. The tunneled electron is
assumed to have a zero initial longitudinal velocity
and a nonzero initial transverse velocity with Gaussian
distribution. Thus, the initial velocities are obtained
by projecting the rotated coordinate into the original
coordinate: vx0 ¼ vper cos θ cosfarctan½ε tanðωt0Þ�g,vy0 ¼
vper sin θ, and vz0 ¼ −vper cos θ sinfarctan½ε tanðωt0Þ�g,
where θ is the angle between vper and the x 0 axis. The
weight of each electron orbit is calculated by[30]

wðt0; vperÞ ¼ wð0Þwð1Þ;

wð0Þ ¼ 4ð2I pÞ2
jEj exp½−2ð2I pÞ32∕3jEj�;

wð1Þ ¼ vperð2I pÞ12
πjEj exp½−v2perð2I pÞ12∕jEj�; (5)

where t0 is the tunneling moment, and vper is the initial
velocity.
In Fig. 1, the results for Ar calculated based on the

simpleman model at 800 nm are presented. In the inset
of Fig. 1(a), the EP laser electric field is graphically illus-
trated. The PMD for Ar subject to EP laser fields at the
intensity of 3 × 1014 W∕cm2 and the ellipticity of 0.7 is
depicted in Fig. 1(a). As shown in this panel, the PMD
is concentrated on a thin curve, which deviates signifi-
cantly from the typical measurements (see, e.g., Ref. [9]).
The deviation can be attributed to the absence of the Cou-
lomb potential and the initial photoelectron velocities
when it is ionized by tunneling in our calculation. With
closer inspection, the yields maxima appear at the minor
axis of the polarization ellipse. This result can be compre-
hended with the fact that, based on the physical picture of
the simpleman model, the photoelectron will be ionized
through tunneling, most likely at the major axis of the
polarization ellipse due to the local field strength maxima
in those directions, and will eventually drift in a direction
perpendicular to the instantaneous field from which it was
released[38].

To investigate the influence of tunneling delay of photo-
electrons, an artificial time delay, δt, is introduced, i.e.,
rather than the instant right after tunneling at t0, the pho-
toelectron trajectory is launched at t0 þ δt, before which
the photoelectron stays at the origin. The calculated result
with the parameters identical to those of Fig. 1(a), except
for the delay of δt ¼ 100 as, is presented in Fig. 1(b). As
shown, the PMD is rotated to some extent due to the time
delay. With closer inspection, the asymmetry of the PMD
can be identified in this panel, which becomes even more
obvious in the angular distributions of photoelectrons in
the inset of Fig. 1(b).

In a typical attoclock experiment, the angular deviation
of yield maximum [indicated by B in the inset of Fig. 1(b)]
from the simpleman model prediction[9] is usually em-
ployed to extract the tunneling delay time information.
According to our calculation, due to the asymmetry of
PMD, this procedure will give rise to an error of around
3.6 as. Here, we employ a more precise procedure. As
shown in the inset of Fig. 1(b), there are two broad humps.
The relevant angles of the first hump are indicated with A,
B, C1, and C2, respectively. C1 and C2 indicate the left
and right yield minima of the first hump, and A indicates
the angle at which the photoelectron yields in the angular
interval of [C1, A] equal that of [A, C2]. The error will
become around 0.12 as if A (instead of B) is employed
to extract the tunneling delay.

To demonstrate the advantage of our procedure and its
physical origin, further numerical calculations have been
carried out and presented in Fig. 2. In all the panels of this
figure, A and B stand for the same meaning as those of the

Fig. 1. (a) Calculated PMD for Ar, which is obtained with the
simpleman model. The inset shows the sketch of the EP laser
field. The wavelength is 800 nm, the ellipticity is 0.7, and the
laser intensity is 3 × 1014 W∕cm2. (b) The calculated PMD with
parameters identical to those of (a) except for the artificially in-
troduced 100 as tunneling time delay. The inset picture is the
corresponding photoelectron angular distribution. (c) Wave-
length dependence of the offset angle calculated with the simple-
man model, including the tunneling delay times of 50, 100, and
150 as, respectively. (d) The wavelength dependence of temporal
offset Δt, which is extracted from the data in (c). See text for
details.
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corresponding capital letters in the inset of Fig. 1(b). As
shown in Fig. 2(a), A and B are consistent with each other
for numerical calculations based on the simpleman model
with zero tunneling delay. Note that the photoelectron
trajectory with corresponding delay starting from the
instant around the peak of the laser electric field has
been indicated with the red line in each panel, which
can be employed to show the correct angle corresponding
to the instant of the peak laser electric field. On the other
hand, when the tunneling delay is 50 as, even with the
simpleman model, A and B show significant difference.
Apparently, A instead of B, is the better choice. The dif-
ference between A and B can be attributed to the nonlin-
ear correspondence between the measured angle and the
emission instant, which becomes complicated when the ef-
fects of nonzero tunneling delay and Coulomb potential
are included. Nevertheless, as shown in Figs. 2(b)–2(d),
A can always be applied to find the correct angle.
To transfer the offset angle measured in an attoclock

experiment to time delay, usually, the equation of Δt ¼
Δθ∕ω0 is employed[8,9,18], which is accurate only when a per-
fect circularly polarized laser field is applied. In contrast,
for an EP laser field, the laser electric field vector rotates
with a variable angular frequency[39], and the relationship
between the offset angle Δθ and the corresponding time
delay Δt can be described by

Δt ¼ arctanðε tanΔθÞ∕ω0; (6)

where ε is the laser ellipticity. Equation (6) can be em-
ployed to obtain the delay information from the offset
angle to improve the accuracy of the attoclock scheme.
With the two improvements discussed above, the

tunneling delay can be obtained with high accuracy.
In Fig. 1(c), the wavelength dependence of the angular off-
set achieved with the procedure described above is

depicted for the time delay of 50, 100, and 150 as, respec-
tively. The angular offset decreases smoothly as an expo-
nential function of wavelength. With Eq. (6), the
corresponding temporal offset can be obtained and is pre-
sented in Fig. 1(d), where all of the delay times are faith-
fully reproduced.

To further study the Coulomb potential influence,
three-dimensional semiclassical calculations have been
performed, where the Coulomb potential of the corre-
sponding model atom is fully included. The typical
PMD of Ar is presented in Fig. 3(a). With the procedure
described above, the temporal offset with respect to the
result of the simpleman model can be extracted accu-
rately. The wavelength dependence of the temporal offset
is depicted in Fig. 3(b). In contrast to the horizontal lines
identified in Fig. 1(d), an obvious decreasing trend of the
wavelength dependence of the extracted temporal offset
can be obtained from the semiclassical calculations. Since
the laser intensity is kept constant, according to the for-
mula with quasi-static approximation (see, e.g., Ref. [12]),
the tunnel exit is identical for the rising wavelength. Thus,
the Coulomb potential strength experienced by the photo-
electron at the tunnel exit is also identical. Nevertheless,
the slope of the TOCP decreasing trend is abrupt at a
shorter wavelength and becomes moderately smooth at
a longer wavelength, indicating the complexity of the pho-
toelectron dynamics in Coulomb potential. Here, it is as-
sumed that the tunneling delay is constant with the rising
wavelength due to the constant laser intensity. If this time
of delay is further introduced, as shown in Fig. 3(b), the
curve will be shifted up with the corresponding amount
of time. From this result, we can understand that the

Fig. 2. Calculated photoelectron angular distributions for Ar
subject to an EP laser field with ellipticity of ε ¼ 0.7, based
on the simpleman [(a) and (b)] and the semiclassical methods
[(c) and (d)]. The tunneling delays are 0 as [(a) and (c)] and
50 as [(b) and (d)], respectively. The laser wavelength is
800 nm. The red lines indicate the angular distributions of photo-
electron tunneling around the peak of the electric field envelope
with a small interval of [3T-0.1 a.u., 3T+0.1 a.u.].

Fig. 3. (a) PMD for Ar calculated with the semiclassical model.
The laser parameters are identical to those of Fig. 1(a). (b)Wave-
length dependence of temporal offset extracted from the semi-
classical calculations for Ar with the tunneling delay times of
0, 50, 100, and 150 as, respectively. (c) Wavelength dependence
of the offset angle calculated with semiclassical model for both Ne
and Ar, where no tunneling delay is included. (d) The corre-
sponding wavelength dependence of the temporal offsets ex-
tracted from the data of Fig. 3(c) and their exponential fits.
The difference between the fits for Ar and Ne is also shown in
(d). See text for details.
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Coulomb potential will induce a temporal offset sensitive
to the wavelength, while the tunneling delay is insensitive
to the wavelength if laser intensity is kept constant, which
might be employed to extract the TOCP.
To shed more light on the relationship between the

decreasing trend in Fig. 3(b) and the Coulomb potential
influence, calculations for other model atoms of H, Kr, and
Ne have also been performed and compared to those of Ar,
where no further artificial tunnel delay is introduced. In
our calculation, the strength of Coulomb potential is re-
lated to the ionization potential of the atom in question.
For example, as is well known, the ionization potential of
Ne is 21.56 eV, which is higher than that of Ar (15.76 eV).
Hence, the deviation of the angular offset from that of Ar
is expected for Ne. Indeed, in Fig. 3(c), where the wave-
length dependence of the angular offset of Ne is compared
to that of Ar, a significant difference between the results of
the two atoms can be identified. With closer inspection,
the angular offset is clearly larger for Ar. Although the
Coulomb potential of Ne could be stronger than that of
Ar, the main difference comes from the inner part around
the nucleus in the spatial range of several atomic units. In
the outer part, the difference of the Coulomb potential
strength is not significant. On the other hand, the tunnel
exit of Ne is larger than that of Ar[12]. Hence, the strength
of the Coulomb potential at the tunnel exit experienced by
the photoelectron of Ar is stronger than that of Ne, which
gives rise to larger angular offset of Ar. Furthermore, as
shown in Fig. 3(c), the deviation becomes smaller for
longer wavelengths, indicating that the wavelength
dependence of angular offset might be related to the
strength of Coulomb potential. Similar analyses can be
performed for other atoms. Therefore, the angular offset
is larger for atoms with lower ionization potential, and this
I p dependence law is consistent with our calculations for
all the model atoms.
In Fig. 3(d), the wavelength dependence of TOCP ex-

tracted with Eq. (6) is presented. The numerical calcula-
tions are shown with symbols, and the exponential fit
curves are indicated with lines. As shown in Fig. 3(d),
the temporal offset of each atom declines gradually with re-
spect to wavelength. In the meantime, all of the atoms show
a similar trend, and the wavelength dependence curves of
the two with similar ionization potentials (e.g., H and
Kr) are very close to each other. On the other hand, the
curves deviate significantly for atoms with very different
ionization potentials (e.g., Ar and Ne). This result gives
us a hint that the wavelength dependence of TOCP might
be related to the value of I p of the atom in question.
In Fig. 4, the wavelength dependence of the ratios of

TOCP of Ne, Ar, and Kr over that of H is presented. As
shown in this figure, all of the data show the trend of hori-
zontal lines. We fit the data of each atom with a horizontal
line, and the obtained ratio is depicted with respect to the
ionization potential in the inset, where the numerical cal-
culation results closely follow the function of ð2I pÞ−3∕2.
As already demonstrated numerically[18] and experimen-
tally[19], Coulomb potential is the sole cause of the measured

offset angle for atom H. Therefore, with this result, the
TOCP of any atom with a H-like potential, can be achieved
easily with the given ionization potential.

With the attoclock experimental scheme, the results
similar to the ones in Fig. 3(b) can be measured, except
that, for a real experiment, the delay time is unknown
and entangled with the TOCP. With a commercially
available mid-infrared laser system, the wavelength
dependence of the PMD can be measured, and the corre-
sponding angular offset (and also the TOCP) can be
further extracted. If the laser intensity is kept constant,
and the wavelength is long enough to eliminate the
non-adiabatic effect, the tunneling delay would only
contribute a vertical shift of the whole curve, as shown
in Fig. 3(b), which may not influence the slope of the
wavelength dependence of the angular offset and also
the TOCP. Thus, with the ð2I pÞ−3∕2 dependence law of
the TOCP, we can extract the TOCP of the target atom
with its relationship with that of H atom, for which the
TOCP can be measured experimentally or calculated nu-
merically with high accuracy.

In conclusion, the Coulomb potential effect of noble gas
atoms subject to a strong EP laser field has been investi-
gated with the semiclassical method. Based on our calcu-
lations, the ð2I pÞ−3∕2 dependence law of the TOCP has
been revealed, and a procedure to experimentally extract
the TOCP has been proposed for attoclock experiments.
To optimize the temporal resolution of the attoclock
technique, two improvements of the analysis procedure
of the attoclock experimental data have been described.
Our work is significant for the accurate measurement of
the tunneling delay in the tunneling ionization of atoms
subject to an intense EP laser field.

This work is supported by the National Key Research and
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Fig. 4. Wavelength dependence of the ratios of TOCP of Ne, Ar,
and Kr over that of H. The semiclassical calculation results are
presented with symbols, and the horizontal line fit is shown with
dashed lines. The ionization potential dependence of the ratio for
each atom is depicted in the inset, where the semiclassical calcu-
lation (SC) result extracted by the fit procedure is shown with
red open squares, and the function of ð2I pÞ−3∕2 is given with a
black solid line.
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