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The resolution of a conventional imaging system based on first-order field correlation can be directly obtained
from the optical transfer function. However, it is challenging to determine the resolution of an imaging system
through random media, including imaging through scattering media and imaging through randomly inhomo-
geneous media, since the point-to-point correspondence between the object and the image plane in these systems
cannot be established by the first-order field correlation anymore. In this Letter, from the perspective of ghost
imaging, we demonstrate for the first time, to the best of our knowledge, that the point-to-point correspondence
in these imaging systems can be quantitatively recovered from the second-order correlation of light fields, and the
imaging capability, such as resolution, of such imaging schemes can thus be derived by analyzing second-order
autocorrelation of the optical transfer function. Based on this theoretical analysis, we propose a lensless Wiener–
Khinchin telescope based on second-order spatial autocorrelation of thermal light, which can acquire the image
of an object by a snapshot via using a spatial random phase modulator. As an incoherent imaging approach
illuminated by thermal light, the lensless Wiener–Khinchin telescope can be applied in many fields such as
X-ray astronomical observations.

OCIS codes: 110.1758, 110.6150, 350.1260, 290.5825.
doi: 10.3788/COL201917.091101.

Imaging resolution is an important metric of various
imaging systems, including microscopy, astronomy, and
photography[1–4]. It is well known that the operating wave-
length λ and the aperture D of an imaging system are two
key parameters for resolution[1,2]. Generally speaking, in
conventional imaging systems, where a point-to-point cor-
respondence between the object and the image plane can
be established based on first-order field correlation, the
resolution can be directly analyzed from a transmission
function of the imaging system, and it is proportional
to λ∕D. Therefore, a shorter wavelength λ and/or a larger
aperture D is required for a higher resolution; however, a
large aperture leads to demanding requirements on the
manufacture of a traditional monolithic optical telescope,
which is arduous, especially for X-ray imaging.
Recently, emerging systems through random media[5–20]

have been built, which include imaging through scattering
media and imaging through randomly inhomogeneous me-
dia. However, it is challenging to determine the resolution
of these imaging systems, since the point-to-point corre-
spondence between the object and the image plane in these
systems cannot be established by the first-order correla-
tion anymore. In this Letter, we show that when the stat-
istical properties of the random media are known as a
priori, the resolution of such an imaging system can be
deduced by analyzing the second-order correlation of light
fields from the prospective of ghost imaging (GI)[10,21–23].
Based on this theoretical analysis, a lensless Wiener–
Khinchin telescope is further proposed based on second-
order spatial autocorrelation of thermal light, which can

acquire the image of the object in a single shot by using
a spatial random phase modulator. We demonstrate that
different from conventional imaging systems, the resolu-
tion of imaging systems through random media not only
depends on the aperture of random media, but also on
the statistical properties of it in a theoretical and exper-
imental way. The influence of signal bandwidth is also in-
vestigated. Moreover, experimental results for both far
away and equivalent infinity far away imaging prove the
feasibility of the proposed lensless Wiener–Khinchin tele-
scope in astronomical observations.

The proposed lensless Wiener–Khinchin telescope
(Fig. 1) consists of a spatial random phase modulator
and a charge-coupled device (CCD) detector, which de-
tects the intensity distribution of the modulated light
field. The object is illuminated by a thermal light source.

For diffraction imaging[24], the spatial intensity distribu-
tion detected by the CCD detector is

I tðrÞ ¼
Z

∞

−∞

D
E0ðr0; tÞE�

0ðr 00; tÞ
E
t
hEðr; r0Þh�Eðr; r 00Þdr0dr 00;

(1)

where E0ðr0; tÞ and E0ðr 00; tÞ are the time-variant complex
amplitude in the object plane, hEðr; r0Þ and hEðr; r 00Þ are
the point-spread function (PSF) of the imaging system,
h⋅it is the time average, r is the coordinate in the detection
plane, and r0 and r 00 are the coordinates in the ob-
ject plane.
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Since the target of a telescope is illuminated by perfectly
incoherent thermal light, we have[24]

D
E0ðr0; tÞE�

0ðr 00; tÞ
E
t
¼ κI 0ðr0Þδðr0 − r 00Þ; (2)

where I 0ðr0Þ ¼ E0ðr0ÞE�
0ðr0Þ is the intensity distribution

in the object plane, and κ is a real constant. Taking Eq. (2)
into Eq. (1) yields

I tðrÞ ¼ κ

Z
∞

−∞
I 0ðr0ÞhI ðr; r0Þdr0; (3)

where hI ðr; r0Þ ¼ hEðr; r0Þh�Eðr; r0Þ is the incoherent in-
tensity impulse response function.
Considering the spatial random phase modulator for

thermal light as an ergodic process, the second-order
spatial autocorrelation of the measured light field is[25,26]

Gð2Þ
I t
ðr þ Δr; rÞ ¼ hE�

t ðr þ ΔrÞE�
t ðrÞEtðrÞEtðr þ ΔrÞir

¼ fE�
t ðr þ ΔrÞE�

t ðrÞEtðrÞEtðr þ ΔrÞgs
¼

n
I tðrÞI tðr þ ΔrÞ

o
s
; (4)

where h⋅ir is the spatial average over the coordinate r, and
f⋅gs is the ensemble average of the spatial random phase
modulator. Plugging Eq. (3) into Eq. (4), we have

Gð2Þ
I t
ðr þ Δr; rÞ ¼

ZZ
−∞

Gð2Þ
h ðr þ Δr; r0 þ Δr0; r; r0Þ

× I 0ðr0 þ Δr0ÞI 0ðr0Þdr0dΔr0; (5)

where

Gð2Þ
h ðr þ Δr; r0 þ Δr0; r; r0Þ ¼ fh�Eðr þ Δr; r0 þ Δr0Þh�Eðr; r0ÞhEðr; r0ÞhEðr þ Δr; r0 þ Δr0Þgs (6)

is the second-order correlation function of PSFs between hEðr; r0Þ and hEðr þ Δr; r0 þ Δr0Þ.

According to the central limit theorem[27], the light field
hEðr; r0Þ through the spatial random phase modulator
obeys the complex circular Gaussian distribution in the
spatial domain[27], and Gð2Þ

h ðr þ Δr; r0 þ Δr0; r; r0Þ can
be written as[28]

Gð2Þ
h ðr þ Δr; r0 þ Δr0; r; r0Þ
¼ B½1þ gð2Þh ðr þ Δr; r0 þ Δr0; r; r0Þ� (7)

with B ¼ fhðr; r0Þgsfhðr þ Δr; r0 þ Δr0Þgs, and

gð2Þh ðr þ Δr; r0 þ Δr0; r; r0Þ

¼
��fh�Eðr þ Δr; r0 þ Δr0ÞhEðr; r0Þgs

��2
B

(8)

is defined as the normalized second-order correlation
of PSFs.

For Fresnel diffraction, the PSF of a lensless Wiener–
Khinchin telescope is

hEðr; r0Þ ¼
exp

h
j2πðz1 þ z2Þ∕λ

i
−λ2z1z2

× exp
hjπðr − r0Þ2
λðz1 þ z2Þ

i Z ∞

−∞
PðrmÞtðrmÞ

× exp
�
jπðz1 þ z2Þ

λz1z2

�
rm −

z1r þ z2r0
z1 þ z2

�
2
�
drm;

(9)

where PðrmÞ and tðrmÞ ¼ exp½j2πðn − 1ÞηðrmÞ∕λ� are the
pupil function and the transmission function of the spatial
random phase modulator, respectively, while ηðrmÞ and n
are the height and the refractive index of the spatial
random phase modulator, respectively.

Substituting Eq. (9) into Eq. (8) yields

gð2Þh ðr þ Δr; r0 þ Δr0; r; r0Þ

×
1
B

����
ZZ

−∞
PðrmÞP�ðr 0mÞftðrmÞt�ðr 0mÞgs

¼ exp
�
j
πðz1 þ z2Þ

λz1z2

�
rm −

z1r þ z2r0
z1 þ z2

�
2
�

× exp
�
−j

πðz1 þ z2Þ
λz1z2

×
�
r 0m −

z1ðr þ ΔrÞ þ z2ðr0 þ Δr0Þ
z1 þ z2

�
2
�
drmdr 0m

����
2
: (10)

In general, assuming the height ensemble average
Rηðrm; r 0mÞ of the spatial random phase modulator obeys
the following mathematical form[29]:

Fig. 1. Schematic of a lensless Wiener–Khinchin telescope. D is
the diameter of the spatial random phase modulator. z1 and z2
are distances from the object and detection planes to the spatial
random phase modulator, respectively.
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Rηðrm; r 0mÞ ¼ fηðrmÞηðr 0mÞgs
¼ ω2 exp

�
−

�
rm − r 0m

ζ

�
2
�

¼ RηðΔrmÞ; Δrm ¼ rm − r 0m; (11)

where ω and ζ are the height standard deviation and
the transverse correlation length of the spatial random
phase modulator, respectively. Thus, we obtain (see
Supplementary Materials for details)

gð2Þh ðr þ Δr; r0 þ Δr0; r; r0Þ

≈
����
�
exp

�
−2

�
2πðn − 1Þ

λ

�
2
�
ω2 − Rη

�
2λz1z2
z1 þ z2

ν

���

⊗ ℱ
n��PðμÞ��2o

μ→ν

o
z1Δrþz2Δr0

2λz1z2

���2

¼ gð2Þh

�
z1Δr þ z2Δr0

2λz1z2

�
; (12)

where ℱf� � �gμ→ν represents the Fourier transform of the
function with the variable μ, and the transformed function
variable is ν.
Taking Eqs. (7) and (12) into Eq. (5), we have

Gð2Þ
I t
ðr þ Δr; rÞ

≈ B
��

1þ gð2Þh

�
Δr0
2λz1

��
⊗ Gð2Þ

I 0
ðr0 þ Δr0; r0Þ

�
−

z1
z2
Δr
; (13)

where

Gð2Þ
I 0
ðr0 þ Δr0; r0Þ ¼

D
I 0ðr0 þ Δr0ÞI 0ðr0Þ

E
r0

¼
Z

∞

−∞
I 0ðr0ÞI 0ðr0 þ Δr0Þdr0 (14)

and

gð2Þh

�
Δr0
2λz1

�

¼
����
�
exp

�
−2

�
2πðn − 1Þ

λ

�
2
�
ω2 − Rη

�
2λz1z2
z1 þ z2

ν

���

⊗ ℱ
n��PðμÞ��2o

μ→ν

o
Δr0
2λz1

���2: (15)

According to the Wiener–Khinchin theorem for
deterministic signals[30] (also known as the autocorrelation
theorem[31]), we have

Gð2Þ
I 0
ðr0 þ Δr0; r0Þ ¼ ℱ−1fjℱfI 0ðr0Þgr0→f 0 j2gf 0→Δr0 :

(16)

Substituting Eq. (16) into Eq. (13), we obtain

Gð2Þ
I t
ðr þ Δr; rÞ ∝

��
1þ gð2Þh

�
Δr0
2λz1

��

⊗ ℱ−1
n��ℱfI 0ðr0Þgr0→f 0

��2o
f 0→Δr0

�
−

z1
z2
Δr
:

(17)

Equation (17) indicates that the energy spectral density��ℱfI 0ðr0Þgr0→f 0

��2 of the intensity distribution I 0ðr0Þ on

the object plane can be separated from Gð2Þ
I t
ðr þ Δr; rÞ,

and the resolution is determined by gð2Þh

	
Δr0
2λz1



. The image

of I 0ðr0Þ can be reconstructed by utilizing phase retrieval
algorithms[32–36]. Here, only the amplitude information
of the target is interested, which can be used as a con-
straint to significantly improve the speed and quality of
reconstruction[37].

To quantify the imaging system, the relationship
between the field of view (FOV), the resolution, and
the spatial random phase modulator is analyzed.

The space translation invariance of the system in space
(also known as the memory effect[38–40]) is required in the
lensless Wiener–Khinchin telescope; therefore, its FOV is
limited by the memory effect range of the imaging system.
Since the target of a telescope is very small compared with
the imaging distance, the memory effect in its FOV is
satisfied. The corresponding normalized second-order
correlation function of light fields between different
incident angles without transverse translation is (see
Supplementary Materials for details)

gð2Þθ ðΔθÞ ¼ exp
�
−

�
2πω
λ

� �������������������������������
n2 − sin2ðΔθiÞ

q
− n

��
2
�

≈ exp
�
−

�
πnω
λ

sin2ðΔθÞ
�
2
�
; (18)

where Δθ is the variation of the incident angle. According
to Eq. (18), the FOV of the lensless Wiener–Khinchin
telescope is proportional to λ

ω.
In addition, Eq. (17) leads to a limitation of the FOV of

the lensless Wiener–Khinchin telescope,

FOV <
L
z2

(19)

with L denoting the CCD detector size. This equation in-
dicates that the FOV is also limited by the CCD detector
size. In order to obtain a large FOV, the CCD detector size
of the lensless Wiener–Khinchin telescope is required to be
much larger than λz2

ω in Eq. (18).
Equation (15) indicates that the resolution not only de-

pends on the aperture of the spatial random phase modu-
lator, but also the statistical properties of it. According to

the convolution operation in gð2Þh

	
Δr0
2λz1



, we discuss two sim-

ple cases below, where the resolution is mainly limited by
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the aperture and the statistical properties of the spatial
random phase modulator, respectively.
Case 1: Resolution is mainly limited by the

aperture.
When the full width at half-maximum (FWHM) of

exp
n
−2

h
2πðn−1Þ

λ

i
2
h
ω2 − Rη

	
2λz1z2
z1þz2

ν

io

is much smaller than

the FWHM of ℱf��PðμÞ��2g
μ→ν

, we have

gð2Þh

�
Δr0
2λz1

�
≍
��ℱn��PðμÞ��2o

μ→−
Δr0
2λz1

����
2
: (20)

For a circle aperture of the spatial random phase modu-
lator, PðμÞ ¼ circ

�μ
D


, and this leads to

gð2Þh

�
Δr0
2λz1

�
∝

2
4J1

	
2πDΔr0

z1λ



2πDΔr0

z1λ

3
5

2

: (21)

In this case, the resolution of the lensless Wiener–Khin-
chin telescope is proportional to 0.61λz1∕D.
Case 2: Resolution is mainly limited by the

statistical properties.

When the FWHM of exp
n
−2

h
2πðn−1Þ

λ

i
2
×h

ω2 − Rη

	
2λz1z2
z1þz2

ν

io

is much larger than the FWHM of

ℱ
n��PðμÞ��2o

μ→ν
,

gð2Þh

�
Δr0
2λz1

�
≈ exp

�
−4

�
2πðn − 1Þωz2Δr0

λðz1 þ z2Þζ
�
2
�

(22)

with the first-order approximation. In this case, the reso-
lution is proportional to

�
1þ z1

z2

 λζ
4πðn−1Þω .

According to the analysis of the above two cases,
Case 1 requires 0.61 λz1

D ≫
�
1þ z1

z2

 λζ
4πðn−1Þω , namely

D ≪ 2.44πz1z2ðn−1Þω
ðz1þz2Þζ , while Case 2 requires

D ≫ 2.44πz1z2ðn−1Þω
ðz1þz2Þζ .

For digital images, the reconstruction is also affected by
the pixel size of the CCD detector. Due to Eq. (16), the
pixel size PCCD of the CCD detector is required by

PCCD <
z2

Mz1
gð2Þh

�
Δr0
2λz1

�
; (23)

where M denotes a split number for discrimination of the
resolution. ForCase 1, according to Eq. (20), the FWHM

of gð2Þh

�Δr0
2λz1


is proportional to λz1∕D, and taking this result

into Eq. (22), the pixel size of the CCD detector is required
to be smaller than λz2

MD. Similarly, forCase 2, the pixel size
of the CCD detector is required to be smaller than λζ

Mðn−1Þω
with z1 ≫ z2 in a telescope scheme.
The experimental setup is shown in Fig. 2. An object is

illuminated by a xenon lamp. The reflected light is filtered

by a narrow-band filter and modulated by a spatial ran-
dom phase modulator with a height standard deviation
ω ¼ 1 μm, a transverse correlation length ζ ¼ 22 μm,
and the refractive index n ¼ 1.46, and then it is relayed
by a lens, which has a 10× magnification, 0.25 numerical
aperture, 195 mm conjugated distance, and 161 mm focus
length, onto a CCD detector (APGCCD) with a pixel size
13 μm× 13 μm, which records the magnified intensity dis-
tribution. Usually, the width of the correlation of the in-
tensity distribution is larger than two times the pixel size
of the CCD. The lens is only used to amplify the intensity
distribution to match the pixel size of the CCD detector
and is not necessary in some conditions.

In order to analyze the resolution of the system, a dou-
ble slit [shown in Fig. 3(a)] is selected. Since the image is
obtained from the second-order spatial autocorrelation of
thermal light, the temporal coherence is not strictly re-
quired. But, the temporal coherence of the light field still
affects the contrast of the spatial fluctuating pseudo-
thermal light due to the dispersion of the spatial random
phase modulator. The reflected light from the object is
filtered by a narrow-band filter, whose central wavelength
λ is either 532 or 550 nm, and its bandwidth w varies
among 3, 10, 25, and 50 nm, when z1 ¼ 0.15 m,
z2 ¼ 12 mm, and D ¼ 8 mm. The results with the same

Fig. 2. Experimental setup of the lensless Wiener–Khinchin
telescope.

Fig. 3. Experimental results with different narrow-band filters.
(a) A photograph of the double slit, where a yellow scale bar is
inserted in the lower right corner. Reconstructed images with dif-
ferent narrow-band filters: (b) λ ¼ 532 nm, w ¼ 3 nm; (c) λ ¼
532 nm, w ¼ 10 nm; (d) λ¼ 550 nm, w ¼ 10 nm; (e) λ ¼ 550 nm,
w ¼ 25 nm; (f) λ ¼ 550 nm, w ¼ 50 nm.
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phase retrieval algorithm[34] are shown in Fig. 3. The
experimental results show that the situation is better
for narrow-band light. In subsequent experiments, a
narrow-band filter with center wavelength λ ¼ 532 nm
and bandwidth w ¼ 10 nm is selected.
To verify Eq. (21) in the experiment, the aperture size is

changed. Images with five different values of apertures
D ¼ 4, 4.5, 5, 6, and 8 mm are obtained, respectively,
while z1 ¼ 1.1 m and z2 ¼ 60 mm are selected approxi-
mately in accordance with Case 1 [see Figs. 4(a)–4(e)].
According to Eq. (20), the theoretical resolutions with dif-
ferent apertures are shown in Fig. 4(f), where FWHMs for
D ¼ 4, 4.5, 5, 6, and 8 mm are 150, 134, 121, 100, and
75 μm, respectively. Figure 4(g) shows a comparison of
theoretical and experimental resolutions at D ¼ 5 mm,
where the red dash line denotes a cross-section of the
experimental result of the double slit in Fig. 4(c). The
experimental results show that the double slit can be
distinguished at D ¼ 5 mm, which agrees well with the
theoretical results.
In Case 2, the resolution is mainly affected by the stat-

istical properties of the spatial random phase modulator,
which leads to a limitation of z2 based on Eq. (22). Five
different values of z2 (4, 6, 8, 10, and 12 mm) are selected,
and the reconstructed images are shown in Figs. 5(a)–5(e),
while z1 ¼ 0.3 m andD ¼ 8 mm. The corresponding theo-
retical resolutions are shown in Fig. 5(f), where FWHMs
for z2 ¼ 4, 6, 8, 10, and 12 mm are 156, 106, 80, 65, and
54 μm, respectively. Figure 5(g) shows a comparison of
theoretical and experimental resolutions at z2 ¼ 8 mm,
where the red dash line denotes a cross-section of
the experimental result of the double slit in Fig. 5(c).

The results show that the double slit can be distinguished
at z2 ¼ 8 mm.

To further verify the imaging capability of the lensless
Wiener–Khinchin telescope, two targets, a letter π and a
panda toy, are imaged, respectively. The illumination is
also a xenon lamp. Different system parameters are se-
lected for the two targets at D ¼ 8 mm. For the ‘π’,
z1 ¼ 0.5 m, z2 ¼ 2 mm, and for the ‘panda’, z1 ¼ 1.5 m,
z2 ¼ 3 mm. The reconstructed images of both are shown
in Fig. 6.

For astronomical observations, the distance z1 is nearly
infinitely far away, which means z1 ≫ z2, so the resolution

gð2Þh

	
Δr0
2λz1



in Eq. (15) is approximated to

gð2Þh

�
Δr0
2λz1

�
∝
����
�
exp

�
−2

�
2πðn − 1Þ

λ

�
2
½ω2 − Rηð2λz2νÞ�

�

⊗ ℱ

�����PðμÞ
����
2
�
μ→ν

�
Δr0
2λz1

����
2
: (24)

An object ‘GI’ is placed on the focal plane of an optical
lens before the spatial random phase modulator to exper-
imentally simulate the target placed infinitely far away.
The image can be well reconstructed, as shown in Fig. 7.
Imaging for both far and equivalently infinite far away
demonstrated in Figs. 6 and 7 proves the feasibility of
the lensless Wiener–Khinchin telescope in astronomical
observations.

In conclusion, we present a novel theoretical frame-
work for imaging schemes through random media and
propose the lensless Wiener–Khinchin telescope based
on second-order spatial autocorrelation of thermal light.

Fig. 4. Resolution at different apertures of the spatial random phase modulator. Reconstructed images with different apertures:
(a) D ¼ 4 mm, (b) D ¼ 4.5 mm, (c) D ¼ 5 mm, (d) D ¼ 6 mm, (e) D ¼ 8 mm. (f) The theoretical resolutions. (g) A comparison
between theoretical and experimental resolutions at D ¼ 5 mm, and the vertical red bar denotes a cross-section of the experimental
result of the double slit in Fig. 4(c).
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The attempt to extract spatial information of an object
from high-order correlation of light fields can be traced
back to the famous Hanbury Brown and Twiss (HBT) ex-
periment in 1956[41,42], which is based on the second-order

autocorrelation of light fields, and GI in 1995, which is
based on second-order mutual correlation of light fields be-
tween the reference and test arms[43]. The HBT experiment
and many of the early works of GI[44,45] perform ensemble
statistics of the temporal fluctuating light field in the time
domain, which requires that the temporal resolution of the
detector is close to or less than the coherence time of
the light field[46]. In contrast, by modulating true thermal
light, such as sunlight, into a spatially fluctuating pseudo-
thermal light field through a spatial random phase modu-
lator[10], the lensless Wiener–Khinchin telescope based on
second-order spatial autocorrelation of thermal light cal-
culates the ensemble statistics of the spatially fluctuating
pseudo-thermal light field in the spatial domain; therefore,
the detection of the temporal intensity fluctuation is not
required.

On the other hand, from the viewpoint of the intensity
autocorrelation, single-shot imaging through scattering
layers and around corners via speckle correlations pre-
sented by Katz et al.[17] did not consider the diffraction
effects of light through random phase modulation; there-
fore, the resolution of the imaging system can hardly be
quantitatively calculated. By analyzing the second-order
correlation of light fields, the resolution is derived and ex-
perimentally verified in the lensless Wiener–Khinchin tele-
scope. The quantitative description of the imaging quality
allows for such imaging systems to not only be demon-
strated, but also be designed in practical applications.

Compared with lensless compressive sensing imag-
ing[12,47,48] and lensless GI[46,49,50], neither a measurement ma-
trix nor a calibration process is required. Thus, the lensless
Wiener–Khinchin telescope has conspicuous advantages
in applications such as X-ray astronomical observations,

Fig. 5. Resolution at different z2. Reconstructed images with different z2: (a) z2 ¼ 4 mm, (b) z2 ¼ 6 mm, (c) z2 ¼ 8 mm,
(d) z2 ¼ 10 mm, (e) z2 ¼ 12 mm. (f) The theoretical resolutions. (g) A comparison between the theoretical and experimental reso-
lutions at z2 ¼ 8 mm, and the vertical red bar denotes a cross-section of the experimental result of the double slit in Fig. 5(c).

Fig. 6. Imaging of a letter π and a panda toy. (a) and (b) are
photographs, where a yellow scale bar is inserted in the lower
right corner, respectively. (c) and (d) are reconstructed images,
respectively.

Fig. 7. Imaging an object placed equivalently infinite far away.
(a) A photograph of the target, where a yellow scale bar is
inserted in the lower right corner. (b) Reconstructed image.
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where the measurement matrix or the calibration for an
unknown imaging distance is difficult and less accurate.
The cancellation of calibration also results in lower re-
quirements in system stability. Moreover, considering
the scattering media or the randomly inhomogeneous
media as a spatial random phase modulator, the lensless
Wiener–Khinchin telescope may also open a door to quan-
titatively describe imaging through scattering media or
randomly inhomogeneous media[5,7–12,14–20].

We thank Guowei Li and Guohai Situ for helpful
discussions. This work was supported by the National
Key Research and Development Program of China
(No. 2017YFB0503303) and the Hi-Tech Research and
Development Program of China (Nos. 2013AA122902
and 2013AA122901).

References
1. C. J. R. Sheppard, Microsc. Res. Tech. 80, 590 (2017).
2. S. Baker and T. Kanade, IEEE Trans. Pattern Anal. Mach. Intell.

24, 1167 (2002).
3. M. C. Roggemann, B. M. Welsh, and R. Q. Fugate, Rev. Mod. Phys.

69, 437 (1997).
4. X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X.

Liu, Light: Sci. Appl. 2, e108 (2013).
5. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari,

M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
6. M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F.

Ferri, Phys. Rev. Lett. 110, 083901 (2013).
7. A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey,

S. Gigan, L. Daudet, and I. Carron, Sci. Rep. 4, 05552 (2014).
8. J. A. Newman and K. J. Webb, Phys. Rev. Lett. 113, 263903 (2014).
9. H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos,

and A. P. Mosk, Optica 2, 424 (2015).
10. Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. Han, Sci. Rep. 6, 25718

(2016).
11. S. K. Sahoo, D. Tang, and C. Dang, Optica 4, 1209 (2017).
12. N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and

L. Waller, Optica 5, 1 (2017).
13. B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, Z. Wu, and L.

Ren, Chin. Opt. Lett. 16, 041102 (2018).
14. P. Wang and R. Menon, Optica 2, 933 (2015).
15. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos,

and A. P. Mosk, Nature 491, 232 (2012).
16. O. Katz, E. Small, and Y. Silberberg, Nat. Photon. 6, 549 (2012).
17. O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photon. 8, 784

(2014).
18. X. Yang, Y. Pu, and D. Psaltis, Opt. Express 22, 3405 (2014).
19. A. Labeyrie, Astron. Astrophys. 6, 85 (1970).
20. D. Y. Gezari, A. Labeyrie, and R. V. Stachnik, Astrophys. J. 173, L1

(1972).
21. H. Liu, J. Cheng, and S. Han, J. Appl. Phys. 102, 103102 (2007).

22. P. Zhang, W. Gong, X. Shen, D. Huang, and S. Han, Opt. Lett. 34,
1222 (2009).

23. Y. Shih, Classical, Semi-classical and Quantum Noise (Springer,
2011), p. 169.

24. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005),
p. 132.

25. J. Cheng and S. Han, Phys. Rev. Lett. 92, 093903 (2004).
26. J. H. Shapiro and R. W. Boyd, Quantum Inf. Process. 11, 949

(2012).
27. J. W. Goodman, Speckle Phenomena in Optics: Theory and Appli-

cations (Roberts, 2007), p. 9.
28. J. W. Goodman, Statistical Optics (Wiley, 2015), p. 44.
29. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B

38, 2297 (1988).
30. L. Cohen, in Proceedings of the 1998 IEEE International Conference

on Acoustics, Speech and Signal Processing (IEEE, 1998).
31. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005),

p. 8.
32. J. R. Fienup, Opt. Lett. 3, 27 (1978).
33. J. R. Fienup, Appl. Opt. 21, 2758 (1982).
34. X. Liu, J. Wu, W. He, M. Liao, C. Zhang, and X. Peng, Opt. Express

23, 18955 (2015).
35. Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and

M. Segev, IEEE Sig. Process. Mag. 32, 87 (2015).
36. J. Sun, Q. Qu, and J. Wright, Foundat. Computat. Mathe. 18, 1131

(2017).
37. G. Ying, Q. Wei, X. Shen, and S. Han, Opt. Commun. 281, 5130

(2008).
38. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005),

p. 66.
39. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61,

834 (1988).
40. G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz,

and I. M. Vellekoop, Optica 4, 886 (2017).
41. R. H. Brown and R. Q. Twiss, Nature 177, 27 (1956).
42. T. A. Smith and Y. Shih, Phys. Rev. Lett. 120, 063606 (2018).
43. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih,

Phys. Rev. Lett. 74, 3600 (1995).
44. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, Phys. Rev. Lett.

94, 063601 (2005).
45. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, Opt. Lett. 30, 2354

(2005).
46. X. F. Liu, X. H. Chen, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A.

Wu, Opt. Lett. 39, 2314 (2014).
47. G. Huang, H. Jiang, K. Matthews, and P. Wilford, in 2013 IEEE

International Conference on Image Processing (IEEE, 2013).
48. M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan,

and R. G. Baraniuk, IEEE Trans. Computat. Imag. 3, 384
(2017).

49. X. H. Chen, Q. Liu, K. H. Luo, and L. A. Wu, Opt. Lett. 34, 695
(2009).

50. H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, Phys. Rev.
Lett. 117, 113901 (2016).

COL 17(9), 091101(2019) CHINESE OPTICS LETTERS September 2019

091101-7


