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We theoretically investigate the delay-dependent attosecond transient absorption spectra in the helium atom
dressed by an infrared laser pulse in the wavelength range of 800–2400 nm. By numerically solving the
three-dimensional time-dependent Schrödinger equation, we find that the absorption spectrogram exhibits a
multiple-fringe structure for using the mid-infrared dressing pulse. The quantitative calculation of the transition
matrix between different Floquet states provides direct evidence on the origin of the multiple-fringe structure.
Our result shows that the wavelength of the dressing pulse is an important parameter and the unique feature of
attosecond transient absorption spectroscopy can be induced in the mid-infrared regime.
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The development of attosecond transient absorption spec-
troscopy (ATAS) in recent years[1–8] has benefited from the
advent of attosecond extreme ultraviolet (XUV) pulse,
which paves the way for progress in the investigation of
ultrafast dynamics of electrons on their natural time
scale[1,9–16]. The pump-probe scheme is usually imple-
mented in ATAS, where whether the XUV and infrared
(IR) pulse serves as a pump or probe depends on the spe-
cific situation. The pump pulse initiates the dynamics of
electrons, and the time-delayed probe pulse is used to read
out the information of the dynamical process by measur-
ing the transmitted spectrum of the XUV pulse. The high
temporal and spectral resolution enables ATAS to be an
important tool for studying complex electronic processes.
For example, ATAS has been used to study laser-induced
electron dynamics of bound states and low-energy
continuum states in atoms and molecules[2,3,5–7,17–21], includ-
ing the observation of the AC Stark effect[5] and sub-cycle
absorption of virtual states in laser-dressed helium
atoms[7]. The transformation of the asymmetric Fano spec-
tral absorption lines into symmetric Lorentzian absorp-
tion peaks in doubly excited helium and vice versa, and
from Lorentzian to Fano in singly excited helium[22], have
been investigated. Moreover, the reshaping effect[23] and
the chirp effect[24] of an XUV pulse on the transient absorp-
tion have been theoretically studied. ATAS has also been
successfully applied to solid matter. The dynamic proper-
ties of valence and conduction bands in silicon have been
experimentally studied[25–27].
In general, most of the works on ATAS are based on

800 nm near infrared (NIR) wavelength lasers, where
ATAS mainly has one absorption signal in one half cycle
of NIR laser. If the driving laser wavelength is increased to

the mid-infrared (MIR, ∼2400 nm) range, the electron will
experience more time within one optical cycle, which can
accumulate a larger phase. Consequently, some new
features and dynamic process may emerge. To explore this
new parameter regime, we numerically calculate the
ATAS of a singly excited helium atom under MIR and
attosecond XUV pulses. By varying the time delay be-
tween the two pulses, we find a feature of grouped multiple
fringes in the ATAS. As the wavelength of the dressing
laser pulse varies from 800 nm to 2400 nm, the number
of absorption peaks in each group increases.

The three-dimensional time-dependent Schrödinger
equation (3D–TDSE) under single active electron
approximation is used to simulate the absorption spec-
trum of helium atom. A detailed description of this
3D-TDSE can be found in reference[24].

The dipole can be calculated as dðtÞ ¼ hψðtÞjxjψðtÞi.
Here, jψðtÞi is the time-dependent wave function of elec-
tron and x is a position operator. This time-dependent
dipole is driven by the total electric field comprising the
MIR and XUV pulses, representing the response of an elec-
tron to an external electric field. The Fourier transform of
this dipole oscillation yields the dipole spectrum dðΩ; τÞ,
from which the ATAS can be written as[23,28] SðΩ; τÞ ¼
2Im½d�ðΩ; τÞEðΩÞ�, Ω ≥ 0. Here, τ is the time delay be-
tween the MIR and XUV pulses, and EðΩÞ is the spectrum
of the XUV pulse. The positive (negative) value of SðΩ; τÞ
is the absorption (emission) of light at frequency Ω.

The intensity of the isolated XUV pulse used in our
simulation is 0.1 TW∕cm2, which can be easily obtained
from high harmonic generation. The central photon en-
ergy of the XUV pulse is 21 eV, and its transform-limited
duration is 300 as, resulting in a bandwidth of 6 eV.
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The bandwidth of this XUV pulse can cover all the ex-
cited states below the ionization threshold (IP ¼24.6 eV).
To avoid the nonlinear effect of the MIR field, a relatively
weak MIR pulse is used.
The ATAS calculated for laser wavelengths of 800 nm

and 2400 nm is shown in Figs. 1(a) and 1(c), respectively.
The duration of the IR (MIR) laser pulse used in the sim-
ulation is four optical cycles (O.C.). The laser intensity is
fixed at 5 TW∕cm2. The positive (negative) delay means
that the XUV pulse arrives after (before) the MIR pulse.
Features like the AC Stark effect and the laser-induced
states (LIS) in the previous work can be clearly observed
in Figs. 1(a) and 1(c). In this work, the LIS 2s− and
2p2− are chosen for analysis because these two states
are far away from higher excited states so that the effects
of the higher excited states can be ignored. The notation
2s− means that the LIS energy is one-laser-photon energy
below the atomic eigenstate 2s. In Fig. 1(c), the energies of
the LIS 2s− and 2p2− are indicated by the white-dashed
lines. The energies of the 2p, 3p, and 2sþ states are also
labeled on the left side in Fig. 1(a). For the case of
800 nm, the absorptions located at 2s− and 2p2− are about
one order of magnitude smaller than that located at 2p.
For better visualization, the ATAS around 2s− and
2p2− is enlarged, as shown in Fig. 1(b) with a different
color scale. In Fig. 1(b), the ATAS around 2s− is half-cycle
modulated (only one fringe in one half-cycle) along the
delay axis, while for 2400 nm in Fig. 1(c) the ATAS
around 2s− exhibits a multiple-fringe structure, forming
the group feature spaced by a half optical cycle. Here, a
group feature means that more than one absorption peak
is grouped together within one half-cycle delay, as shown
by the lower white-dashed lines in Fig. 1(c). For the ATAS
located at 2p2−, there is no group feature for both wave-
lengths, viz., 800 nm and 2400 nm, as shown in Figs. 1(b)
and 1(c), respectively.
As reported in previous work[4,28], the 2ω and 4ω

oscillation frequencies of the absorption signals can be
observed at some specific positions. In our work, we quan-
titatively investigate the oscillation strength of the 2ω, 4ω,
and 6ω components of LIS 2s− and 2p2− dependent on the

dressing laser wavelength by performing a Fourier trans-
formation along the delay axis. To make it clear, we take
the 2ω component as reference, and the relative strengths
of 4ω and 6ω components can be obtained as a function of
laser wavelength, as shown in Figs. 2(a) and 2(b). In
Fig. 2(a), we can clearly see the increase of the 4ω com-
ponent with the increase of the laser wavelength. To draw
a quantitative comparison, the relative strengths for the
2ω (blue-solid), 4ω (red-dot), and 6ω (carmine-dashed)
components are plotted in Figs. 2(c) and 2(d).

In Fig. 2(c), one can see that the 4ω component is
stronger than the 2ω component when the wavelength
reaches 2400 nm. Around this wavelength, the group
feature can be clearly observed, as shown in Fig. 1(c).
The 6ω component can be ignored due to its small value,
but it is still increasing. For the 2p2− shown in Fig. 2(d),
the 4ω and 6ω components are much smaller than the 2ω
component, which makes the multiple fringe structure
unclear in Fig. 1(c).

As mentioned above, the 3D-TDSE model has shown
the high-frequency oscillation of the ATAS dependent
on the laser wavelength; we still need the Floquet theory
to uncover the role of the MIR and XUV pulses in the
ATAS. First, in the Floquet picture, the interaction
between the MIR field and the atom is considered as a uni-
fied eigensystem, forming a series of dressed states
(Floquet states) in which the energies for a group of Flo-
quet states originating from the same field-free atomic
state are separated by one MIR photon. Second, the
XUV pulse interacts with the new generated system by
pushing the ground-state electron into different Floquet
states within the spectrum of the XUV pulse. The concept
of Floquet states is very useful for analyzing the LISs

Fig. 1. ATAS calculated for (a) 800 nm and (c) 2400 nm laser
pulses with 3D-TDSE. For better observation, the region in (a)
with the photon energy ranging from 16 to 20.5 eV is enlarged
in (b). In (b) and (c), the absorption signals for 2s− and 2p2− are
marked by white-dashed lines.

Fig. 2. Relative oscillation strength of the 2ω, 4ω, and 6ω
components calculated from the 3D-TDSE as a function of
the dressing laser wavelength. (a) and (c) show the result for
the 2s− state. (b) and (d) show the result for the 2p2− state.
In (c) and (d), the blue solid lines indicate the strength of
the 2ω component as reference, while the red-dot and the
carmine-dashed lines represent the 4ω and 6ω components,
respectively.
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occurring in the transient absorption. The ideas and
notations in this section follow the work of Wu et al.[28].
In the Floquet theory, the Floquet Hamiltonian is ex-

panded in the direct product of atomic states jαi and
the ‘Fourier basis’ jmi as

hα; njHF jβ;mi ¼ ðεβ −mωÞδα;βδn;m
þ 1
2
dαβðδnþ1;m þ δn;mþ1Þ: ð1Þ

Here, HF is the Floquet Hamiltonian, jα; mi ¼
jαi ⊗ jmi ¼ jαie−imωt , and these “Fourier bases” can also
be understood as the photon number basis. The symbol ⊗
denotes the direct product. dαβ denotes the transition
elements between the atomic states jαi and jβi. After
diagonalizing the Floquet matrix [Eq. (1)], the time-
independent Floquet state jϕα;mi and its energy can be
obtained. Once the electronic wave function is constructed
from these time-independent Floquet states, the dipole
oscillation induced by the quantum beat between different
Floquet states and the ground state can be written as[28]

Dðt; τÞ
¼

X

α;n;m

e−iðεαþmωÞteiðn−mÞωτhϕα;njμX jψ0ihψ0jμX jϕα;mi þ c:c:

(2)

Here, εα is the Floquet energy, jψ0i is the ground state,
and τ is the pump-probe delay. μX is the dipole operator of
the XUV pulse, meaning that the dipole described by
Eq. (2) is only induced by the XUV pulse. This time-
dependent dipole oscillation can be used to analyze the
features of the absorption spectrum.
The Floquet theory has already been used to analyze

the absorption process in ATAS[28,29]. This is because
the Floquet state jα;mi is equivalent to LIS αm and can
be analytically or numerically obtained. In what follows,
we only focus on the absorption signals for the 2s− and
2p2− states.
We use three atomic states, viz., 1s, 2s, and 2p, as the

basis, and 13 Floquet ladders for each atomic state, which
is large enough to describe the absorption process
accurately. According to Eq. (2), the time- and delay-
dependent dipole, which describes the absorption at
energy position εα þmω, can be written as

dðt; τÞ
¼

X

n

e−iðεαþmωÞteiðn−mÞωτhϕα;njμX jψ0ihψ0jμX jϕα;mi þ c:c:

(3)

The Fourier transformation of this time-dependent
dipole gives the dipole spectrum. Substituting this dipole
spectrum into the response function, ignoring the spec-
trum profile of the electric field, and setting the spectrum
phase of the electric field to be π∕2, the response function
can be written as

SðΩ; τÞ ¼ 2δ½Ω− ðεα þmωÞ�hψ0jμX jϕα;migðτÞ: (4)

Here, δ½Ω− ðεα þmωÞ� is a delta function correspond-
ing to the absorption located at jα;mi (or LIS αm). gðτÞ ¼
hψ0jμX jϕα;mi

P
phϕα;mþ2pjμX jψ0i cosð2pωτÞ is the modula-

tion function, and p ¼ 0;�1;�2;�3;… represents
0ω; 2ω; 4ω; 6ω;… modulation. In Eq. (4), the transition
element hψ0jμX jϕα;mi determines the strength of absorp-
tion at the energy position εα þmω. The modulation
function g(τ) can be written more explicitly in the form

gðτÞ ¼ hϕα;mjμX jψ0i cosð0ωτÞ
þ ½hϕα;m−2jμX jψ0i þ hϕα;mþ2jμX jψ0i� cosð2ωτÞ
þ ½hϕα;m−4jμX jψ0i þ hϕα;mþ4jμX jψ0i� cosð4ωτÞ
þ ½hϕα;m−6jμX jψ0i þ hϕα;mþ6jμX jψ0i� cosð6ωτÞ þ … .

(5)

It should be noted that the 0ω component in Eq. (5)
gives a basis for the absorption signals. In addition,
it is clear that the strength of the 2ω oscillation is deter-
mined by the sum of two transition matrix elements
hϕα;m−2jμX jψ0i and hϕα;mþ2jμX jψ0i, physically meaning
that two quantum paths interfere. The two involved
quantum states are jϕα;m−2i and jϕα;mþ2i. For instance,
the oscillation strength of the 2ω component for j2s;−1i
is determined by the interference of quantum paths from
j2s;−3i and j2s;þ1i. This result disagrees with previous
work where the 2ω oscillation of j2s;−1i is attributed to the
interference from quantumpaths j2s;−1i and j2s;þ1i[28]. For
convenience, Eq. (5) can be rewritten as gðτÞ ¼ g0 cosð0ωτÞþ
g1 cosð2ωτÞ þ g2 cosð4ωτÞ þ g3 cosð6ωτÞ þ …. Here, g0 ¼
hϕα;mjμX jψ0i and gi ¼ hϕα;m−2ijμX jψ0i þ hϕα;mþ2ijμX jψ0i;
i ¼ 1; 2; 3; …. When taking g1 as reference, the modulation
function can be reduced to

f ðτÞ ¼ f 0 cosð0ωτÞ þ f 1 cosð2ωτÞ þ f 2 cosð4ωτÞ
þ f 3 cosð6ωτÞ þ …: (6)

Here, f i ¼ gi∕g1; i ¼ 0; 1; 2;…. Except for f 0, the other
coefficients f 1, f 2, and f 3 can be called modulation coeffi-
cients as they represent the relative modulation strength
of the 2ω, 4ω, and 6ω modulation components. Usually,
the coefficient f 1 is maximum, resulting in the strongest
2ωmodulation. For instance, for a laser pulse with a wave-
length of λ ¼ 800 nm and intensity I 0 ¼ 5 TW∕cm2, the
modulation coefficients f 1, f 2, and f 3 for the Floquet
state j2s;−1i are f 1 ¼ 1, f 2 ¼ 0.013, and f 3 ¼ 0.0005.
Obviously, f 1 > f 2 > f 3, and the 2ω modulation will be
dominant in ATAS. This is indeed the case, as it can
be seen from Fig. 1(b) that only the half-cycle modulation
at j2s;−1i is visible. It is therefore found that, from
Eq. (6), the modulation function f ðτÞ describes the group
features in ATAS. To confirm this conclusion further, the
modulation coefficients f 1, f 2, and f 3 are calculated upon
scanning the wavelengths from 800 nm to 2400 nm. The
laser intensity is kept the same as that in Fig. 2.
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In Figs. 3(a) and 3(b), the modulation coefficients f 1
(black-square), f 2 (red-cycle), and f 3 (blue-triangle) are
calculated for the absorption lines at Floquet states
j2s;−1i and j2p;−2i, respectively. Comparing the results
shown in Fig. 3(a) with those in Fig. 2(c), we identify that
the modulation coefficients calculated through the
Floquet theory have successfully revealed the relative
strength of the 2ω, 4ω, and 6ω modulation frequency
for j2s;−1i. The same conclusion can be drawn for
j2p;−2i from the results shown in Figs. 3(b) and 2(d).
In Fig. 3(a), when the laser wavelength is shorter than
2000 nm, the coefficient f 2 is much smaller than f 1, mean-
ing that the 2ω modulation is dominating and the group
feature cannot be observed in ATAS. With increasing
wavelength, f 2 becomes comparable to f 1, which means
that the 2ωmodulation is no longer dominant, causing the
appearance of the group feature in ATAS. When the
wavelength is tuned to 2400 nm, f 2 is even greater than
f 1. Therefore, the 4ω modulation is dominant, resulting
in two absorption peaks in one group, as shown in Fig. 1(c).
The coefficient f 3 increases slowly with increasing wave-
length, but it is still too small to affect the absorption
process. In Fig. 3(b) the coefficients f 2 and f 3 are both
smaller than f 1; hence, the group feature is invisible. It
should be noted that the MIR laser pulse is a monochro-
matic plane wave and the XUV pulse is assumed to be a
delta function temporally in the ATAS Floquet theory.
The agreement between Fig. 3 and Fig. 2 confirms that
the Floquet theory can shed light on the multiple fringe
structure of the ATAS very well.
In conclusion, our work presents a theoretical simula-

tion of the ATAS of the helium atom, with emphasis
on the wavelength of the dressing laser pulse in the
MIR range. Two methods, viz., the 3D-TDSE and the
Floquet theory, are used to reveal the novel characteristics
of the ATAS of the helium atom. We find that the absorp-
tion spectrum shows a structure of grouped multiple
fringes that are dependent on the laser wavelength. Using
the Floquet theory, we confirm that the grouped struc-
tures are the result of the superposition of different oscil-
lation components, and the number of absorption peaks in

each group is determined by the relative value of the tran-
sition matrix from the ground state to relevant Floquet
states. For the 2400 nm laser, two absorption peaks are
grouped together. In addition to the AC Stark effect
and the non-adiabatic effect, this group feature is a promi-
nent feature in ATAS when the laser wavelength is tuned
to the MIR.
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