
Interactive length of fundamental wave and second
harmonic generated on the surface of anomalous

dispersion medium

XiaojingWang (王晓静)1, HuaijinRen (任怀瑾)2,GangWang (王刚)1, and JunHe (何军)1,*
1Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics

and Electronics, Central South University, Changsha 410083, China
2Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China

*Corresponding author: junhe@csu.edu.cn
Received January 30, 2019; accepted May 13, 2019; posted online July 18, 2019

In this Letter, a new method is presented to calculate the interactive length between the fundamental wave and
second harmonic generation (SHG) for the configuration of total internal reflection on the inner surface of a
nonlinear crystal. Three independent experiments are designed to measure the bandwidths of this second
harmonic wave. The theoretical expression of the intensity of SHG is obtained through a nonlinear coupled
wave equation. The interactive length of this phase-matched SHG can be calculated mathematically by utilizing
the measured bandwidths and the intensity equation. There is no existing method to obtain the interactive
length either from theoretical calculations or by experimental measurement. This method can be applied to
estimate the extremely short interactive volume in nonlinear processes.
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Nonlinear frequency conversion processes in optics have
been extensively studied since the invention of light
amplification by stimulated emission of radiation[1–9].
The efficiencies of nonlinear parametric processes are
determined by the extent of phase matching. Because
of the effect of dispersion, it is difficult to naturally attain
the condition of phase matching in interacting waves.
In previous research, phase matching can be achieved
by various artificial techniques, such as tuning tempera-
ture and angle in birefringent crystals, and applying
periodic-poled nonlinear crystals with a change of the
sign of second-order nonlinear susceptibility[9–13]. The
periodic change of second-order nonlinear susceptibility
can provide an additional reciprocal wave vector to fulfill
the phase-matching condition in nonlinear parametric
processes. New types of phase matching, like nonlinear
Cherenkov radiation, have also been researched exten-
sively[14–17]. Nonlinear parametric processes that are
generated on the boundary of a bulk medium have been
researched deeply in previous work[15–20]. Such nonlinear
parametric processes have novel phase-matching types
like scattering-assisted conical second harmonic genera-
tion (SHG) and reflective-light-assisted sum frequency.
The sharp second-order susceptibility modulation from
1 to 0 can give rise to the enhancement of the conversion
efficiency. The phase-matching mechanism of nonlinear
parametric processes generated from complete phase
matching of incident light and reflected light on the
boundary of bulk crystals was investigated deeply in
our previous research[17,18]. The diagrams of this phase-
matching condition are shown in Fig. 1(a). When the
wavelength of the fundamental wave exceeds 1030 nm,

the phase velocity of the corresponding polarized wave
exceeds the ordinary fundamental wave in birefringent
crystals, as shown in Fig. 2(b). Under this anomalous-like
dispersion environment, the wave vectors of the funda-
mental wave and SHG form a complete triangle on the
boundary of the bulk crystal, as shown in Fig. 1(b). From
the deduced nonlinear coupling wave equation, we can

Fig. 1. (a) Diagrams of SHG generated by incident and reflected
fundamental waves. (b) The triangle phase-matching type of the
SHG spot. (c) The photographs of SHGwith different fundamen-
tal wavelengths (1180 nm, 1200 nm, 1220 nm, 1240 nm, and
1260 nm).

Fig. 2. (a) Experiment setup. (b) Comparison of the refractive
index of an extraordinary-polarized second harmonic beam and
that of an ordinary-polarized fundamental beam in a lithium nio-
bate crystal.
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conclude that the intensity of SHG I 2 is related to Δk.
The scalar equation of this phase-mismatched factor can
be demonstrated as Δk ¼ 4π½n2eðTÞ− n1oðTÞ·cos θ�∕λ1.
Incident angle, operating temperature, and pump wave-
length are three parameters directly related to the inten-
sity of the noncollinear SHG. By varying incident angle,
operating temperature, and pumping wavelength to a
small extent, several phase-mismatched noncollinear sec-
ond harmonics (SHs) can occur under this anomalous-
like dispersion condition. Their generation mechanisms
are attributed to the large acceptance of SHG from com-
plete phase matching of incident light and reflected light
on the boundary of the nonlinear bulk medium[17]. The
conversion efficiency of the phase-matching noncollinear
SHG is up to 15.74%, with an extremely short interactive
volume for one single total reflection on the surface of the
nonlinear crystal. When one of these three parameters is
changed in one precise phase-matching situation, the pre-
cise balance is broken. Although two methods that are
based on beam-pulse overlap and conversion efficiency
can be used to investigate the interactive length, these
methods both require specific information for both the
beam width of the fundamental wave (FW) and sec-
ond-order nonlinear susceptibility. These requirements
are obstacles for investigations when this information
is unknown. In this Letter, a nonlinear coupled wave
equation of this type of SHG is deduced. The relationship
of the intensity of SHG with the interactive length can be
obtained from the coupled wave equation. Through three
independent experiments, three parameters of band-
width are measured, respectively. After measuring the
bandwidths and deducing the intensity equation, one
method is proposed to calculate the interactive length
of this SHG through relative equations without knowing
the beam width of the FW and the second-order nonlin-
ear susceptibility of a nonlinear crystal.
In the following, the coupled wave equation for a

triangle phase-matching type of SHG generated by inci-
dent light and reflected light on the boundary of a non-
linear crystal will be solved. The fundamental wave
illuminates the inner boundary of the bulk crystal with
an internal angle of θ. The fundamental wave is a
Gaussian beam and the modulation along the z axis is
neglected for simplicity; the dispersion function of the
amplitude turns out to be e−x2∕a2 , where a is the beam
width. The relevant time-independent parts of the ampli-
tude of the incident and reflected fundamental waves are

E1 ¼ A1e−z2∕a2eiðk1 cos θ·xþk1 sin θ·zÞ; (1)

E 0
1 ¼ A1e−z2∕a2eiðk1 cos θ·x−k1 sin θ·zÞ: (2)

The expression of the SH wave is defined as

E2 ¼ A2ðx; zÞeik2·x : (3)

In the above equations, A1e−z2∕a2 and A2 represent the
amplitude of the fundamental wave and the second

harmonic wave, respectively. k1 and k2 are the wave vec-
tors of the FW and SHG, respectively. The dispersion
function of the amplitude of the FW turns out to be
e−z2∕a2 , where a is the beam width. The nonlinear
coupled wave equations are deduced from the Maxwell
equations. Because of the undepleted pump approxima-
tion, we can consider the amplitude of the fundamental
wave as unchanged. Under these assumptions, the non-
linear coupled wave equation of the amplitude of the SH
wave turns out to be[20]

∂
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A1ðx; zÞ ¼ 0; (4)
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where n2ω denotes the refractive index of the SH wave,
Δk ¼ k2 − 2k1 cos θ is the phase-mismatched factor, ω is
the angular frequency of the FW, and hðzÞ denotes the
distribution function of χð2Þ. It represents the structure
function of the nonlinear crystal. In this case, hðzÞ has
the following form:

hðzÞ ¼
�
1;
0

�
z ≥ 0
z < 0

: (6)

To solve Eq. (5), we change the amplitude from the
space function A2ðx; zÞ into the Fourier spectrum:

A2ðx; kzÞ ¼
Z

A2ðx; zÞ·eikzz dz: (7)

We substitute Eq. (7) into the nonlinear coupled wave
equation, and seek two partial differential equations for z.
Then Eq. (5) takes the form
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where Δk ¼ k2 − 2 cos θ·k1 is the phase mismatched fac-
tor. We apply the Fourier-transform technique on both
sides of Eq. (8), and then solve the corresponding inhomo-
geneous linear equation. The x integration limit is from 0
to x, where x is the interactive length. The amplitude of
the second harmonic wave can be expressed as
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The intensity of the SH I 2ðx; kzÞ ¼ jA2ðx; kzÞj2 can then
be expressed as

I 2ðkz ;xÞ¼
�

k2
2n2

2ω
χð2Þ

	
2
I 21·x2·sinc2

��
Δk−

k2z
2k2

�
x
2

	
jH ðkzÞj2:

(10)

As we analyzed in our previous research[17], kz is the
transverse wave vector of the generated SH. The symbol
sinc represents a function of sincðxÞ ¼ sinðπxÞ

πx . The situa-
tion of kz ¼ 0 corresponds to this phase-matching SHG.
The intensity of this central SHG can then be expressed as

I 2ðkz ; xÞ ¼
�
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jHðkzÞj2;

(11)

where x is actually the interactive length, Δk ¼ k2−
2k1 cos θ is the phase-mismatched factor, and H ðkzÞ ¼
Hð0Þ ¼ R

e−2z2∕a2·hðzÞ·eikzz dz ¼ 2
��
π
8

p
a.

Under anomalous-dispersion-like conditions, the re-
quirement for phase matching of noncollinear SHG gener-
ated by incident light and reflected light on the boundary
of a bulk crystal is analyzed to be k2 ¼ 2k1 cos θ

[17]. A z-cut
5% (mole fraction) MgO:LiNbO3 crystal of 3 mm ×
10 mm× 2 mm size is utilized as the experimental crystal.
The experiment setup is shown in Fig. 2(a). The two sym-
metrical SHG spots, 1 and 2, are collinear SHG of the in-
cident and reflective wave, respectively. The SHG marked
as 3 is the phase-matching noncollinear SHG generated by
incident light and reflected light on the boundary of the
bulk crystal. The intensity of the SHG marked as 3 can
be significantly enhanced when the phase-matching re-
quirement is satisfied. Equation (10) shows that both
the radiation angle and the intensity of this noncollinear
SHG generated on the boundary are mainly determined
by the term sinc2ðΔk·x∕2Þ. The conversion efficiency is
measured as up to 15.74% for this surface complete
phase-matching SHG. Δk ¼ k2 − 2k1 cos θ is the phase-
mismatched factor. When k2 equals 2k1 cos θ, Δk equals 0
under this condition, and sinc2ðΔk·x∕2Þ equals 1. The in-
tensity of SHG is the maximum in this condition. This
noncollinear SHG is under the phase-matching condition.
The experimental setup is demonstrated in Fig. 2(a).
There are three parameters determining the scalar quan-
tity of the factor Δk. The scalar equation of the phase-mis-
matched factor of this SHG generated on the boundary
can be expressed as Δk ¼ 4π½n2eðTÞ− n1oðTÞ·cos θ�∕λ1.
There are three parameters that are directly related to the
phase-mismatched factor. These parameters are internal
incident angle, temperature of crystal, and wavelength
of FW. The intensity of the SHG I 2 is proportional to
d2effI

2
1·x2·sinc2ðΔk·x∕2Þ as demonstrated in the de-

duced energy equation of SHG in Eq. (11). When one
of these parameters in one precise phase-matching situa-
tion is changed, the precise balance is broken. The inten-
sity of SHG decreases from the maximum. The interactive

length x is unchanged under the slowly varying envelope
approximation. Therefore, the phase-mismatched factor
Δk exclusively decides the intensity of SHG. By utilizing
three independent experiments that measure the band-
width of these three parameters, three statistical data can
be obtained to calculate the interactive length through the
corresponding equations. Through mathematical calcula-
tions, when Δk·x∕2 equals 1.3916, sinc2ðΔk·x∕2Þ goes to
1/2. This situation corresponds to half of the maximum
energy of the SHG. By measuring the bandwidths of angle,
temperature, and wavelength through three independent
experiments, these measured bandwidths can be substi-
tuted into the corresponding equations to calculate the
interactive length as follows:

Δk ¼ 4π½n2eðTÞ− n1oðTÞ·cos θ�∕λ1; (12)

Δk·x∕2 ¼ 1.3916: (13)

The incident angle, temperature, and wavelength are
the three direct parameters that determine the phase-
mismatched factor of the noncollinear SHG on the boun-
dary of the nonlinear crystal. In order to estimate the
interactive length through mathematical calculation, we
need to obtain the bandwidth of these three parameters
first. For the investigation of the bandwidth of angle,
the bandwidths of angles that correspond to different fun-
damental wavelengths are measured. The inner incident
angle θ is related to the scalar quantity of the phase-
mismatched factor Δk, as shown in Eq. (12). Ordinary-
polarized fundamental waves with wavelength of 1064,
1200, 1400, and 1600 nm are, respectively, used to illumi-
nate the inner boundary of the nonlinear crystal. The tem-
perature of the experiment is set at 29°C. A femtosecond
laser pulse is produced by an optical parametric amplifier
(TOPAS, USF-UV2) (repetition frequency 2 kHz and
pulse duration 50 fs). The temperature and fundamental
wavelength are kept unchanged once the condition is con-
firmed to make sure the angle is the only changing param-
eter. A receptor is used to measure the energy of SHG.
When the nonlinear crystal is rotated to change the inci-
dent angle, the maximum and half of the maximum energy
of the SHG can be measured. By measuring the corre-
sponding angles the bandwidths of the angles can be
obtained. The external angle bandwidths are measured
to be 0.49°, 0.54°, 0.53°, and 0.50°. These measured band-
widths correspond, respectively, to fundamental waves
with wavelengths of 1200, 1240, 1280, and 1300 nm.
Experimental results are shown in Figs. 3(a)–3(d). Then
these measured bandwidths are transformed into inner in-
cident angles through Snell’s equation and substituted
into Eqs. (12) and (13). The interactive lengths are calcu-
lated to be 0.4012, 0.4220, 0.4210, and 0.443 mm, respec-
tively, through these equations.

Temperature is the second parameter that directly de-
termines the refractive coefficients of the fundamental
wave and second harmonic wave n1oðTÞ and n2eðTÞ. In
order to have a relatively precise temperature bandwidth,
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we measure the bandwidth of different fundamental waves
with wavelengths of 1200, 1240, 1280, and 1300 nm. An
optical parametric amplifier (TOPAS, USF-UV2) is used
to produce femtosecond laser pulses (repetition frequency
2 kHz and pulse duration 50 fs). When the temperature of
the nonlinear crystal is changed, the refractive coefficients
of the fundamental wave and second harmonic wave will
change subsequently due to their dependence on temper-
ature. Equation (12) shows that the refractive coefficients
of the fundamental wave and second harmonic wave are
directly related to the scalar quantity of the phase-
mismatched Δk. The results show that changing the
temperature of a nonlinear bulk crystal can disturb the
balance of the phase-matching condition because it causes
the scalar quantity of Δk to deviate from 0. The incident
angle and the fundamental wavelength are kept un-
changed in order to make sure the temperature is the only
changing parameter. When the temperature of the non-
linear crystal is changed, the maximum and half of the
maximum energy of the SHG can be measured. By meas-
uring the corresponding temperatures, the bandwidths of
the temperature can be obtained. The temperature band-
widths of the crystal measured are 5.83°C, 5.52°C, 5.32°C,
and 5.64°C, respectively, as shown in Figs. 4(a)–4(d).
The measured bandwidths are substituted into Eqs. (12)
and (13). Then the interactive lengths are calculated to be
0.4639, 0.4821, 0.4780, and 0.5092 mm, respectively.
Wavelength is the third parameter that directly deter-

mines the scalar quantity of this phase-mismatched factor
Δk. The optical parametric amplifier femtosecond laser
system (50 fs pulses at a repetition rate of 1 kHz) is used

to provide the fundamental wave[17]. The fundamental
wave has a 75 nm bandwidth. One precise incident angle
corresponds to only one fundamental wavelength. The
external angles are fixed from 14° to 20°, respectively.
These external angles correspond to different fundamental
wavelengths (centric wavelengths from 1112 nm, 1122 nm,
1150 nm, 1164 nm, 1184 nm, 1210 nm, to 1246 nm). In
order to make sure the wavelength is the only changing
parameter, the incident angle and temperature are kept
unchanged. From the obtained spectral components of
SHG, the bandwidth of SHG with a wavelength of 575 nm
is measured to be approximately 3 nm[17]. Considering the
quadratic relationship of the intensity between SHG and
the fundamental wave, the calculated wavelength band-
width of the fundamental wave is 6 nm. The measured
bandwidth is substituted into Eqs. (12) and (13). The
interactive length is calculated to be about 0.4142 mm.
The interactive lengths of this phase-matching SHG inde-
pendently calculated through three bandwidth para-
meters are very close. The calculated interactive lengths
that are deduced from angle, temperature, and wave-
length bandwidths have some differences. The difference
mainly comes from imprecise experimental measurements
because the data of the three different bandwidths mea-
sured by the experiment equipment are not so accurate.
Some work still has to be done to improve the accuracy
of the equipment for these bandwidth experiments.
The maximum is 0.5092 mm, the minimum is 0.4012 mm,
and the average is 0.4463 mm. The interactive length

Fig. 3. (a) The measured energy of SHG with the relationship of
angles (fundamental wavelength of 1200 nm) and the energy
changing process. (b) The measured energy of SHG with the re-
lationship of angles (fundamental wavelength of 1240 nm) and
energy changing process. (c) The measured energy of SHG with
the relationship of angles (fundamental wavelength of 1280 nm)
and energy changing process. (d) The measured energy of SHG
with the relationship of angles (fundamental wavelength of
1300 nm) and energy changing process.

Fig. 4. (a) The measured energy of SHG with the relationship of
temperature (fundamental wavelength of 1200 nm) and the en-
ergy changing process. (b) The measured energy of SHG with the
relationship of temperature (fundamental wavelength of
1240 nm) and the energy changing process. (c) The measured
energy of SHG with the relationship of temperature (fundamen-
tal wavelength of 1280 nm) and the changing process of energy.
(d) The measured energy of SHGwith the relationship of temper-
ature (fundamental wavelength of 1300 nm) and the energy
changing process.
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between the incident light and reflected light is not that
short for two main reasons. The first reason is that the
incident light is a Gaussian beam. The incident light does
not illustrate the boundary of the crystal with the shortest
beam width for avoiding destroying the nonlinear crystal,
so it has longer beam width. The second reason is that the
incident light illuminates the boundary with an angle θ.
This oblique incident lengthens the interactive length.
In summary, we study theoretically the coupled wave

equation of SHG generated by a Gaussian beam on the
boundary of quadratic bulk nonlinear media. By using
the Fourier-transform technique, the coupled wave
equation of this SHG is solved. Through three independ-
ently designed experiments that focus on the bandwidth
of three parameters, which determine the phase matching
geometry of this SHG, statistical data are obtained. Then
by utilizing the measured bandwidths and the coupled
wave equation through mathematical calculations, the
interactive length of this phase-matching SHG is calcu-
lated. This method will provide useful information to
estimate an extremely short interactive volume. This
method can also be used to provide specific information
for both unknown beam widths of FW and nonlinear
second-order susceptibility of nonlinear crystals by cor-
responding equations.

This work was supported in part by the National Excel-
lent Youth Science Fund Project (No. 61222406) and
the Hunan Province Hibiscus Scholar Award Program
(No. 7601110103).
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