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In this Letter, we propose an advanced framework of ghost edge imaging, named compressed ghost edge imaging
(CGEI). In the scheme, a set of structured speckle patterns with pixel shifting illuminate on an unknown object.
The output is collected by a bucket detector without any spatial resolution. By using a compressed
sensing algorithm, we obtain horizontal and vertical edge information of the unknown object with the bucket
detector detection results and the known structured speckle patterns. The edge is finally constructed via two-
dimensional edge information. The experimental and numerical simulations results show that the proposed
scheme has a higher quality and reduces the number of measurements, in comparison with the existing edge
detection schemes based on ghost imaging.
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Ghost imaging (GI), also called single-pixel imaging, is a
novel optical imaging technique that has received great
attention recently[1–5]. There are two spatially correlated
optical beams in a GI system. One beam, called the object
beam, illuminates an unknown object, and the resulting
scattered light is then collected by a bucket detector
without any spatial resolution. The other beam, named
the reference beam, never interacts with the object and
is detected by a spatially resolving detector. A ghost image
is reconstructed by correlating the bucket signal and the
reference signal, but not either one alone. Compared with
traditional imaging methods, GI can be used to recon-
struct the image of the object in various optically harsh
or noisy environments[6].
Edge detection methods find edges by noticing dramatic

changes in image processing. It is extensively used in
image segmentation, target recognition, and computer
vision[7,8]. In traditional edge detection methods, the object
needs to be imaged first, and the edge information can be
obtained by developing a corresponding edge operator.
However, in harsh or noisy environments, the imaging step
is difficult to achieve, so the edge detection algorithm
cannot be implemented. Given the special properties of
GI, edge detection methods based on GI can solve the
problem of disturbances in the optical path and have an
advantage in edge detection. In recent years, GI-based
edge detection has achieved some results[9–13]. In Ref. [9],
a gradient GI (GGI) was proposed to detect edges of an
unknown object directly. However, it is a problem for
choosing a proper gradient angle based on the prior knowl-
edge of the object in this method. Subsequently, speckle-
shifting GI (SSGI) was introduced to find the edge of an
unknown object without additional prior knowledge of the
object[10]. Meanwhile, subpixel-SSGI was proposed, which
can enhance the resolution of edge detection with low

resolution speckle patterns[11]. In Ref. [12], the authors pre-
sented structured intensity patterns to find the edge of an
object directly from the data detected by computational
GI (CGI). In Ref. [13], special sinusoidal patterns were de-
signed to find the edge of an unknown object with an im-
provement in the signal-to-noise ratio (SNR) in the
frequency domain. However, the number of measurements
of these schemes is large, and the quality of the edge de-
tection results still needs to be improved.

On the other hand, a compressed sensing (CS) method
was introduced into GI to obtain a higher resolution image
of an object by exploiting the redundancy in the structure
of the images to reduce the number of measurements
required for exact reconstruction[14–16]. Therefore, a GI
method based on CS can enable the reconstruction of an
N-pixel image from much less than N measurements,
which overcomes the limitations of the Nyquist sampling
theorem and greatly reduces the acquisition time and
number of required measurements[17,18].

In the Letter, we propose a GI-based edge detection
scheme that combines selected features of a CS technique.
We call our method compressed ghost edge imaging
(CGEI). In the scheme, special random patterns with char-
acteristics of different speckle-shifting are first designed. In
the CS technique, high-quality horizontal and vertical
edge information could be obtained directly from the
bucket detector detection results and the structured illu-
minations. Lastly, the global edge of the unknown object is
constructed with two-dimensional edge information.

Figure 1 shows the schematic diagram of the CGEI
scheme. The light is modulated by a digital micro-mirror
device (DMD), which is controlled by a computer to pro-
duce the speckle patterns Skðxi ; yjÞ, k ¼ 1; 2;…;M , where
M is the number of speckle patterns, and xi , yj are the
spatial coordinates. The bucket detector measures the
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total light transmitted by the object Tðxi ; yjÞ, and the
output signal is detected as

yk ¼
X
xi

X
yj

Skðxi ; yjÞTðxi ; yjÞ; (1)

where Skðxi ; yjÞ can be pre-designed. The image of the
object can be obtained by applying a second-order
correlation[9],

Tðxi ; yjÞ ¼ hSkðxi ; yjÞ·yki− hSkðxi ; yjÞihyki; (2)

where h·i denotes the ensemble average.
Speckle-shifting, introduced by an edge operator (such

as gradient vector and Sobel operator), automatically
detects the edge of an unknown object[9,10]. In this work,
we use the Sobel operator to introduce the principle of
CGEI. To achieve edge detection, several speckle groups
are divided, and they are related as follows:

Skðxi ; yjÞ ¼ S1
kðxi−1; yj−1Þ ¼ S2

kðxi−1; yjÞ ¼ S3
kðxi−1; yjþ1Þ

¼ S4
kðxi ; yj−1Þ ¼ S5

kðxi ; yjþ1Þ ¼ S6
kðxiþ1; yj−1Þ

¼ S7
kðxiþ1; yjÞ ¼ S8

kðxiþ1; yjþ1Þ;
(3)

where Sl
k , l ¼ 1; 2;…; 8 represents the lth group of shifted

speckle patterns. By using the Sobel operator property
and Eq. (1), one obtains the horizontal measurements
as follows:

∇yhk ¼
X
xi

X
yj

S1
kðxi ; yjÞTðxi ; yjÞ

þ 2 ×
X
xi

X
yj

S2
kðxi ; yjÞTðxi ; yjÞ

þ
X
xi

X
yj

S3
kðxi ; yjÞTðxi ; yjÞ

−
X
xi

X
yj

S6
kðxi ; yjÞTðxi ; yjÞ

− 2 ×
X
xi

X
yj

S7
kðxi ; yjÞTðxi ; yjÞ

−
X
xi

X
yj

S8
kðxi ; yjÞTðxi ; yjÞ

¼
X
xi

X
yj

Skðxi ; yjÞ½Tðxi−1; yj−1Þ þ 2 × Tðxi−1; yjÞ

þ Tðxi−1; yjþ1Þ− Tðxiþ1; yj−1Þ
− 2 × Tðxiþ1; yjÞ− Tðxiþ1; yjþ1Þ�

¼
X
xi

X
yj

Skðxi ; yjÞ∇S
hTðxi ; yjÞ; (4)

where ∇S
hTðxi ; yjÞ represents the horizontal edge of the

unknown object using the Sobel operator. Using
Eq. (2), the horizontal edge of the object is

∇S
hTðxi ; yjÞ ¼ hSkðxi ; yjÞ·∇yhki− hSkðxi ; yjÞih∇yhki; (5)

similarly, the vertical edge of the object is obtained as

∇S
v Tðxi ; yjÞ ¼ hSkðxi ; yjÞ·∇yvki− hSkðxi ; yjÞih∇yvki; (6)

where ∇yvk represents vertical measurements, and
∇S

v Tðxi ; yjÞ represents the vertical edge of an unknown
object using a Sobel operator. Finally, the edge of the
object will be obtained by

T edge ¼
������������������������������������������������������������������
½∇S

hTðxi ; yjÞ�2 þ ½∇S
v Tðxi ; yjÞ�2

q
: ð7Þ

Although the above method can reconstruct the edge of
an unknown object, too many measurements are needed.
However, any prior information using the structure of an
object, such as sparsity, could reduce the number of
measurements required for a faithful reconstruction. It
is demonstrated that CS algorithms allow us to get good
reconstructions for GI, provided that the number of mea-
surements is smaller than the number of pixels of the
image[16–18]. The edge images of the object are sparse, that
is, most pixels of the edge images are zero. Thus, we can
introduce the CS method in ghost edge imaging to reduce
the number of measurements needed for faithful edge
detection even though they suffer from some computa-
tional overhead. In this work, we adopt the total variation
minimization by augmented Lagrangian and alternating
direction algorithms (TVAL3)[19]. The speckle field of
the kth sample is recorded as Skðxi ; yjÞ. The index xi rep-
resents the horizontal pixel coordinate and i ¼ 1; 2;…;m;
the index yj represents the vertical pixel coordinate and
j ¼ 1; 2;…; n. The k values represent the sampling frame
index, and M is the total number of speckle patterns.
Next, each speckle intensity Skðxi ; yjÞ is reshaped as a
row vector ϕk of size 1 × N , where N ¼ n ×m,

ϕk ¼ ½Skðx1; y1Þ � � � Skðx1; ynÞ Skðx2; y1Þ � � �
Skðx2; ynÞ � � � Skðxm; y1Þ � � � Skðxm; ynÞ�; (8)

after M samples, we can get an M × N samples array re-
corded as A, and it can be written as the following matrix:

Light 
Source DMD

CS

... ...

Random Speckle Patterns

Optical Lens

Object

Bucket Detector

Edge of the Object
Computer

Vertical Information

Horizontal Information

...y ...j

..
.

..
.

xi

Fig. 1. Schematic diagram of the CGEI scheme.
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A ¼

2
6664

ϕ1
ϕ2

..

.

ϕM

3
7775

¼

2
6664

S1ðx1; y1Þ S1ðx1; y2Þ � � � S1ðxm; ynÞ
S2ðx1; y1Þ S2ðx1; y2Þ � � � S2ðxm; ynÞ

..

. ..
. ..

.

SM ðx1; y1Þ SM ðx1; y2Þ � � � SM ðxm; ynÞ

3
7775: (9)

The signal from the bucket detector, containing hori-
zontal information of the unknown object, can be
arranged as an M × 1 column vector Yh, i.e., Yh ¼ ½∇yh1
∇yh2 � � � ∇yhk � � � ∇yhM �T . Taking ∇yhk for example, it can
be obtained by

∇yhk ¼ y1k þ 2 × y2k þ y3k − y6k − 2 × y7k − y8k ; (10)

where ylk , l ¼ 1; 2; 3; 6; 7; 8 is the bucket value correspond-
ing to Sl

k , l ¼ 1; 2; 3; 6; 7; 8 passing through the unknown
object. Therefore, ∇S

hTðxi ; yjÞ could be reconstructed as a
solution[19]:

min
X
f

‖DfXh‖1 þ
μ

2
‖Yh − AXh‖22; (11)

where μ is a nonnegative parameter, Xh is an N × 1 col-
umn vector by reforming the two-dimensional horizontal
edge information ∇S

hTðxi ; yjÞ, the sparse transform Df is
usually exploited as a set of fixed bases such as the discrete
cosine transform and wavelet, DfXh denotes the discrete
gradient of Xh at element f ðf ¼ 1; 2;…;NÞ, and ‖·‖1 and
‖·‖2 stand for the l1 norm and l2 norm, respectively. We
can get the vertical edge information ∇S

v Tðxi ; yjÞ in the
same way.
To compare the quality of the edge detection quantita-

tively, the SNR is used as an objective evaluation. We use
the following definition in this evaluation[9–13]:

SNR ¼ meanðT edgeÞ−meanðTbackÞ
½varðTbackÞ�0.5

; (12)

where T edge and Tback are the intensity values of the edge
detection results and background region, respectively,
meanð·Þ represents the average value, and varð·Þ de-
notes the variance value. Next, we introduce the definition
of a compression ratio:

Compression ratio ¼ M
m × n

¼ M 0

m × n × L
; (13)

whereM is the number of speckle patterns,M 0 is the num-
ber of the measurements of the bucket detector, andm and
n represent the horizontal and vertical dimensions of the
object, respectively. Finally, L represents the number of
the group of shifted speckle patterns using different
operators. The L values for the gradient vector and Sobel
operator algorithms are 2 and 8, respectively.

For comparison, numerical simulations and experi-
ments detect the edge of a gray-scale object. Because of
the randomness of the speckle patterns intensity distribu-
tion, we present the reconstructed image over 10 times in
all of the following simulations and experiments, respec-
tively, and the speckle patterns used in different methods
of the same object are completely consistent. The simula-
tions and experimental results (SNR) selected in the fol-
lowing paragraphs are the fifth of ten measurements of
SNRs arranged in a small to large order, and we set μ equal
to 212 in Eq. (11) as a coefficient to balance the regulari-
zation and the data fidelity.

To evaluate the effectiveness of CGEI, we start with
numerical simulations. The edge detection results of
GGI coupled with a gradient vector of φ ¼ 45° (GGI-
45°), SSGI coupled with a Sobel operator (SSGI-So),
CGEI coupled with a gradient vector of φ ¼ 45°
(CGEI-45°), and CGEI coupled with a Sobel operator
(CGEI-So) are summarized in Fig. 2. There are 6554
speckle patterns (compression ratio: 0.4) modulated by
DMD to illuminate the gray-scale objects (128 × 128 pix-
els). In the GGI scheme, GGI-45° is implemented with
random patterns with two one-pixel-shifting, so the mea-
surement of the bucket detector is twice the number of the
random patterns (total 13,108 measurements). Similarly,
the number of bucket detector measurements of the SSGI-
So with eight one-pixel-shifting is eight times the number
of random patterns (total 52,432 measurements), respec-
tively. Meanwhile, the numbers of bucket measurements
of the CGEI-45° and the CGEI-So are 13,108 and
52,432, respectively. The results in Fig. 2 show that CGEI
enhances the ability of recognizing the target more than
GGI-45° and SSGI-So. For “Picture1”, the SNRs of edge
detection using CGEI-45°, CGEI-So, GGI-45°, and SSGI-
So are 5.2383, 10.0509, 0.6544, and 1.1592, respectively.
The use of CGEI has an enhanced SNR of more than eight
times. In addition, we also use “Picture2” as the target,
and the simulation results are summarized in Fig. 2. Com-
pared with the results of different schemes, we can see our
scheme has consistently better SNR performance.

Next, we simulate the GGI-45°, SSGI-So, CGEI-45°,
and CGEI-So processes with different compression ratios.
The results (SNR) of different algorithms, as a function of
measurements, where “Picture1” is the target, are shown
in Fig. 3. We can see that the CGEI reconstruction is
much better than GGI-45° and SSGI-So, regardless of
the compression ratio.

There are a lot of various noises in the real world. Ac-
cording to Eq. (1), added white Gaussian noise (AWGN)
is considered to simulate the bucket detection. The SNR of
the bucket detector SNRBD is defined as

SNRBD ¼ 10log10
PowerS
PowerN

; (14)

where PowerS is the signal power collected by the bucket
detector, and PowerN is the power of the AWGNwith zero
means imposed on the bucket detector. The resulting
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SNRs of different algorithms applied to “Picture1”, where
the number of speckle patterns is set to 4915 (compression
ratio: 0.3), are shown in Fig. 4. From Fig. 4, we can see
that as the power of the AWGN increases, the SNRs of

the edge detection algorithms decrease. However, the
CGEI method outperforms GGI-45° and SSGI-So when
SNRBD is higher than 9 dB.

Moreover, we apply our scheme to data collected via an
experiment. The prototype CGEI is shown in Fig. 5. One
red LED is used as the source, and the light is collimated
by lens L1 to be focused onto a DMD (DMD
TIDLPC350). The DMD is controlled by a computer to
modulate the light needed to generate the random speckle
patterns, Sl

kðxi ; yjÞ, k ¼ 1; 2;…;M . Later, the beams with
the random speckle patterns are projected onto an object
by lens L2. A rabbit doll (a gray-scale object) is used as the
unknown object, which is shown in Fig. 5. The transmitted
light carrying the object’s scattering information is col-
lected by an imaging lens L3 onto a bucket detector (Thor-
labs PMM02) to complete the measurement. A pair of
detection results ∇yhk and ∇yvk is recorded by the computer.
Then, the edge of the object, organized as horizontal and
vertical coordinates, are extracted by using the TVAL3 al-
gorithm. Finally, we get the edge of the unknown object.

The experimental results are summarized in Fig. 6. The
number of the speckle patterns is set to 2000 (compression
ratio: 0.49). Similar to our theoretical analysis and simu-
lations, we can see the edge detection method with the
best performance. Thus, we can say that CGEI is better
than GGI-45° and SSGI-So in real applications.

In addition, we also compare the experimental results
(SNR) using different schemes for different compression
ratios, and the results are shown in Fig. 7. In the figure,
the rabbit is the object that needs to be reconstructed.
Therefore, from Fig. 7, the experimental results show that
CGEI outperforms other algorithms for different compres-
sion ratios.

To further illustrate the effectiveness of CGEI, we per-
form a simulation-based comparison. In most traditional

SNR=41.5425 SNR=48.3832

SNR=1.3660 SNR=2.5335

CGEI-45° CGEI-So

CGEI-45° CGEI-So

SNR=5.2383 SNR=10.0509

SNR=0.6544 SNR=1.1592

GGI-45°

GGI-45°

Original object

Resolution:128×128

Resolution:128×128
Picture2

Picture1

SSGI-So

SSGI-So

Fig. 2. Numerical simulation results of the unknown objects
using different schemes, where SNR is presented together.

0.1 0.2 0.3 0.4 0.5

Compression ratio

0

5

10

15

SN
R

CGEI with Gradient  vector of 45°

CGEI with Sobel operator

GGI with Gradient vector of 45°

SSGI with Sobel operator

Fig. 3. Numerical simulation results (SNR) using different
schemes for different compression ratios.

810121416Inf
SNRBD (dB)

0

2

4

6

8

10

SN
R

CGEI with Gradient vector of 45°

CGEI with Sobel operator

GGI with Gradient vector of 45°

SSGI with Sobel operator

Fig. 4. SNR performance of edge information against SNRBD

using different schemes.
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edge detection approaches, the original target is imaged
first, and the edge is extracted later (e.g., gradient
vector-based and Sobel operator-based methods). In our

simulation-based validation, we reconstruct the image
of the object by using the CGI[16], and then use the gradient
vector (CSGI-45°) and Sobel operator (CSGI-So) to ex-
tract the edge of an object from its image. The number
of the speckle patterns is set to 4915 (compression ratio:
0.3). The SNRs of the reconstructed images are then
reviewed. We find that the SNRs of CSGI-45° and
CSGI-So are lower than that of CGEI-45° and CGEI-
So, respectively; these results are shown in Fig. 8. There-
fore, the simulation further illustrates the effectiveness of
CGEI. In summary, CGEI can extract edge information
from an unknown object without needing an image or pri-
ori information. Therefore, we dramatically improve the
performance of an edge detection process by CGEI.

In conclusion, we have proposed an edge detection scheme
by using CGEI in this Letter. We have compared the per-
formance of GGI-45°, SSGI-So, CGEI-45°, and CGEI-So via
numerical simulations and experiments. The results show
that the imaging quality could be greatly improved by using
CGEI (when compared to GGI-45° and SSGI-So). More-
over, we validate our results via a simulation that compares
our methods, CGEI-45°, and CGEI-So to CSGI-45° and
CSGI-So, respectively. The results further illustrate the ef-
fectiveness of CGEI. The simulations and experiments show
that CGEI has good edge detection performance.
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