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A novel predictive dynamic bandwidth allocation (DBA) method based on the long short-term memory (LSTM)
neural network is proposed for a 10-gigabit-capable passive optical network in mobile front-haul (MFH) links. By
predicting the number of packets that arrive at the optical network unit buffer based on LSTM, the round-trip
time delay in traditional DBAs can be eliminated to meet the strict latency requirement for MFH links. Our
study shows that the LSTM neural network has better performance than feed-forward neural networks. Based on
extensive simulations, the proposed scheme is found to be able to achieve the latency requirement for MFH and
outperforms the traditional DBAs in terms of delay, jitter, and packet loss ratio.
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The cloud radio access network (C-RAN) is one of the key
technologies for fifth generation mobile communication
(5G)[1–3]. In a C-RAN, the digital baseband processing
units (BBUs) are moved from mobile base station sites
to a central location known as the BBU pool that serves
a group of distributed radio units known as remote radio
heads (RRHs)[1]. Mobile front-haul (MFH) is an optical
link that connects RRHs in multiple locations to the
BBU pool[2]. The number of MFH links is expected to
increase with the increasing traffic requirements of the
5G systems. To reduce the MFH link cost, a time division
multiplexed passive optical network (TDM-PON) is pro-
posed as it allows sharing of optical fibers and transmis-
sion equipment[2,3]. However, a TDM-PON suffers from
a large latency for forwarding uplink traffic because an
optical network unit (ONU) has a waiting time of several
milliseconds in a typical dynamic bandwidth allocation
(DBA) scheme[3]. This transmission waiting time in the
ONU is a critical problem since the latency requirement
for the MFH link is very strict, e.g., less than 250 μs
defined by the Third Generation Partnership Project
(3GPP)[4].
Different methods have been proposed in the literature

to solve the latency issue of TDM-PON[5–9]. For example,
fixed bandwidth allocation (FBA) is used to meet the
latency requirement for MFH links[3]. However, the band-
width usage efficiency is low and the number of ONUs that
can be accommodated is limited by the FBA algorithm[3,5].
Instead, a statistical DBA scheme has been proposed to
improve the bandwidth usage efficiency[7]. A disadvantage
of the statistical DBA is that it cannot deal with burst
of MFH traffic. Reference [8] evaluated the performance
of group-assured GIANT (gGIANT) and round-robin
DBA (RR-DBA). Results show that neither RR-DBA

nor gGIANT satisfies the delay requirement for MFH,
and RR-DBA has a lower upstream delay than gGIANT.

Machine learning (ML), a branch of artificial intelli-
gence (AI), is regarded as one of the most promising
methodological approaches to performing different types
of network data analysis for automated network self-
configuration[10]. Recently, machine learning techniques
have been successfully applied in optical communication
and optical networks to improve the intelligence of such
systems[10–12]. With its powerful modeling capabilities,
artificial intelligence is also desirable to help solving the
latency issue of TDM-PON for MFH applications.

In this Letter, we propose a long short-term memory
(LSTM)-based predictive DBA method for a slow-latency
10-gigabit-capable passive optical network (XG-PON)
MFH for a C-RAN based on traffic estimation in Fig. 1.
First, the problem of predicting the number of packets
that arrive at the ONU is formulated as an ML function
approximation problem. Second, LSTM is investigated for
this problem and compared to a feed-forward neural net-
work (FNN). Results show that the LSTM neural network
has better prediction performance than FNN. Finally, the

Fig. 1. MFH architecture based on the XG-PON system.
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LSTM-based DBA for XG-PONs is extensively studied in
terms of delay, jitter, and packet loss ratio. It is verified
that the LSTM-DBA outperforms the traditional DBA,
such as RR-DBA and FNN-DBA. In the proposed
LSTM-based DBA, the number of packets that arrive
at the ONU buffer from the RRHs is predicted using an
LSTM recurrent neural network. Based on the accurate
prediction results, the DBA module at the optical line
terminal (OLT) can grant bandwidth without waiting
for the ONU buffer occupancy report to the OLT.
A low latency can thus be achieved to meet the latency
requirement (250 μs[4]) for MFH links.
Recurrent neural network (RNN) is a learning method

in the fields of ML that was initially proposed for sequence
prediction problems and has gained a lot of attention
in recent years[13–15]. An RNN introduces a recurrent
structure for implementing a memory mechanism to keep
track of past information. Through this recurrent struc-
ture, the RNN has better performance than the FNN in
the prediction analysis of data with time series. However,
the RNN is affected by the gradient exploding or gradient
vanishing[13,14] that prevents a complete learning of the
time series. Due to this issue, we investigate the LSTM
RNNs[14], which is a variant of RNN with neurons replaced
by cells, for more accurate traffic prediction in this work.
In the following, Rj

t stands for the buffer occupancy
report for the tth cycle sent from the jth ONU to the
OLT, and Dj

t stands for the number of packets received
in the tth cycle by the OLT from the jth ONU. Clearly,
these two time series reports have important information
on the working status of each ONU. Assuming that Xj

t is
the number of packets that arrive at the jth ONU from the
connected RRHs in the tth cycle, Xj

t can be calculated
using Eq. (1), where Rj

t−1 −Dj
t−1 is the remaining packets

in the jth ONU after sending the upstream frame in the
(t − 1)th cycle:

Xj
t ¼ Rj

t − ðRj
t−1 −Dj

t−1Þ: (1)

If Xj
tþ1 can be known in advance, then the DBA

algorithm can allocate corresponding resources to the
ONU with reduced waiting time for latency minimization.
However, in practice, we can only estimate Xj

tþ1 by some
estimate function X̂ j

tþ1 ¼ f ðXj
t−Kþ1;X

j
t−Kþ2;…;X

j
tÞ. From

the ML perspective, this estimation problem can be
regarded as a sequence forecasting problem and can be
solved using the LSTM neural network model in Fig. 2.
The time series sequence Xj

t−Kþ1;X
j
t−Kþ2;…;X

j
t is the

input to the neural network, with K equal to 128 in this
work. Simulation results showed that this value ofK could
achieve a good balance between estimation accuracy and
computational complexity. The model includes three hid-
den layers: LSTM layer (64 cells, dropout with p ¼ 0.2)
and two fully connected (FC) layers with 64 and 16 neu-
rons, respectively. A single neuron is used for the output
layer as the result for the predicted number of packets
to arrive at the jth ONU. In the choice of the number
of hidden layers and neurons, both accuracy and speed

of convergence should be considered. After verification
of various parameters, the above parameters are found
to be able to achieve good results.

The structure of the LSTM cell is shown in Fig. 3, with
details shown in Fig. 4. The time series sequence
Xt−Kþ1;Xt−Kþ2;…;Xt−1;Xt is used as the input to the
layer and the output is denoted as another sequence
ht−Kþ1; ht−Kþ2;…; ht−1; ht . For one input sequence at time
t, each cell will be recursively used for K times as unfolded
in time in Fig. 3 with one element Xt−Kþk at a time and
k ∈ f1; 2;…;Kg. The kth output ht−Kþk and the kth cell
state called Ct−Kþk are used together with (k þ 1)th input
Xt−Kþkþ1 for computing the next output and cell state, as
shown in Fig. 4. The output sequence ht−Kþ1; ht−Kþ2;…;
ht−1; ht is ready for the next layer after ht is computed.

One of the advantages of LSTM is its ability to remove
or add information to the cell state by a gate structure.
There are three gates in each cell, input gate, forget gate,
and output gate that can optionally let information pass

Fig. 2. LSTM neural network architecture used in the proposed
method.

Fig. 3. LSTM cell and its unfolding in time.

Fig. 4. Detailed structure of the LSTM cell memory block. The
sigmoid function is denoted as σ and the pointwise multiplication
is denoted as × in the figure.
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through. Each gate is composed of a sigmoid function (“σ”
in Fig. 4) and a pointwise multiplication operation (“×” in
Fig. 4). The mathematical models for the three gates are
shown from Eq. (2) to Eq. (7), whereW is a weight vector
and b is the bias:

f t−Kþkþ1 ¼ σðWf·½ht−Kþk ;Xt−Kþkþ1� þ bf Þ; (2)

it−Kþkþ1 ¼ σðWi·½ht−Kþk ;Xt−Kþkþ1� þ biÞ; (3)

~Ct−Kþkþ1 ¼ tanhðWC·½ht−Kþk ;Xt−Kþkþ1� þ bC Þ; (4)

Ct−Kþkþ1 ¼ f t−Kþkþ1 × Ct−Kþk þ it−Kþkþ1 × ~Ct−Kþkþ1;

(5)

ot−Kþkþ1 ¼ σðW 0·½ht−Kþk ;Xt−Kþkþ1� þ b0Þ; (6)

ht−Kþkþ1 ¼ ot−Kþkþ1 × tanhðCt−Kþkþ1Þ: (7)

First, the forget gate in Fig. 4 is used to decide which
information would be thrown away from the cell state.
This gate uses a sigmoid function with an input of
ht−Kþk representing the output of the previous cell,
Xt−Kþkþ1 representing the input of the current cell, and
output f t−Kþkþ1 as in Eq. (2). The output is equal to 1,
which represents “completely keep this,” while 0 repre-
sents “completely get rid of this.” Second, the input gate
decides which values will be updated in this cell. As shown
in Fig. 4, the sigmoid layer will decide the values to be
updated, i.e., the result calculated using Eq. (3), and
the new candidate value ~Ct−Kþkþ1 calculated in Eq. (4)
using the tanh function. As described in Eq. (5), the state
of the cell is computed based on the output of the forget
gate and the input gate. Finally, the cell has to decide the
output value by the output gate. As shown in Fig. 4, the
next output ht−Kþkþ1 is computed using the output gate as
given in Eq. (6) and Eq. (7).
In order to obtain accurate prediction results on the

number of arriving packets at the ONU, 8000 samples
collected in a period of 1 s are used for LSTM RNN train-
ing and updating. Note that an ONU sends its buffer
occupancy report in a cycle of 125 μs. During training,
samples are divided into a training part (70%) and a val-
idation part (30%). The back propagation through time
(BPTT) algorithm[14] is used for training. In this work,
mean square error (MSE) is used for loss function follow-
ing Ref. [16]. By computing the partial derivatives of the
outputs, weights, and input values of hidden layers, the
network can move backward to trace the error between
the real output values and the predicted output values.
The weights are updated using the gradient descent
method in order to reduce the prediction errors. After
training, the neural network is used for real-time predict-
ing with low complexity[16].
Each DBA cycle contains one prediction phase and one

grant assignment phase, as shown in Algorithm 1. X̂ j
tþ1

(the number of packets that will arrive at the ONU in
the next cycle) is predicted by the LSTM, as mentioned

above in the prediction phase. In the grant assignment
phase, a pre-grant assignment Ĝj

tþ1 is computed as the
sum of the predicted number of arriving packets X̂ j

tþ1 plus
the remaining packets in the ONU buffer Rj

t −Dj
t . In the

case that the sum of the pre-grant assignment packets is in
excess of the max upstream bandwidth (MUB) of the
cycle, the maximum of Ĝj

tþ1 is reduced by one
(Ĝj

tþ1 −−) until the sum of the pre-grant assignment
packets can be accommodated by the MUB, as shown
from step 6 to step 8 in Algorithm 1.

In order to verify the performance of the proposed
LSTM-based prediction method, simulations are con-
ducted to analyze its performance and compared with
the FNN-based method from Ref. [9]. The sizes of the
FNN are configured as 128/512/64/16/1 for input-layer/
hidden-layer1/hidden-layer2/hidden-layer3/output-layer
with best system performance. In the simulations, the
Poisson Pareto burst process (PPBP) model, with main
parameters shown in Table 1, is used to generate the
upstream data traffic. The PPBP model is chosen as it
matches the statistical properties of real-life network
traffic[17]. The number of packets arriving at the ONU
(equal to the number of packets produced by the PPBP)
Xj

t is collected every 125 μs and saved in the dataset. In
this simulation, the simulation time in different Poisson
arrival rates is 1 s. In the training phase, the data in
the dataset was divided into two parts, the training part

Table 1. Traffic Simulation Parameters

Parameters Values

Number of bursts 5000

Mean burst time length 2 ms

Poisson arrival rate [95, 110, 125–200 Mbps]

Hurst parameter 0.8

Pareto shape parameter 1.4

Packet size 1470 bytes
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and the validation part. The training part is used to train
the LSTM RNN or FNN, and the other data is used for
validation. Figure 5 shows the MSE curves between the
predicted and the real number of packets that arrived
as the number of epochs increases in the process of train-
ing. The results show that the LSTM can get more accu-
rate prediction results than the FNN as long as enough
epochs are included in the training.
Furthermore, the proposed LSTM-based DBA algo-

rithm is evaluated by numerical simulations, with NS-3[18]

using the XG-PON module[19] in terms of the average
packet latency, jitter, and packet loss ratio of the traffic.
The total number of ONUs in the XG-PON is assumed to
be 10, in which 10 small-cell RRHs are connected to 10
ONUs following Ref. [9] (assuming that each ONU
had only one T-CONT). The buffer size of the ONU
(i.e., T-CONT) is 1 Mbytes. The roundtrip propagation
delay (RTT) is 100 μs, which can cover up to a 10 km
front-haul distance. The parameters for the PPBP model
to simulate the burst of the front-haul data traffic in the
uplink transmission are the same as in Table 1. The maxi-
mum transfer data rate for the PPBP traffic is set to
2.048 Gbps. Table 2 summarizes the abovementioned sim-
ulation parameters.
The upstream delay is one of the most important

parameters for real-time applications. Figure 6 shows
the average upstream delay performance comparison

among the three DBA algorithms. The upstream delay
is computed as the difference in time between the arrival
time of a certain packet to the T-CONT buffer at the ONU
side and the arrival time of the same packet at the OLT
side, including a one-way propagation delay of 50 μs for
packet transmission, as in Ref. [8]. As we can see, the
LSTM-DBA outperforms the other two algorithms from
low load to high load. From Fig. 6, the conventional
RR-DBA is found to fail to satisfy the delay requirement
of 250 μs for MFH links when the per-ONU (RRH) load
exceeds 95 Mbps.

Figure 6 also shows that the FNN-DBA obtained an
average delay less than 250 μs until the per-ONU/RRU
traffic load is increased to 140 Mbps. While for the LSTM-
DBA, not only does it have a lower average upstream
delay, but also its delay performance can still meet the re-
quirement until the pre-ONU/RRH traffic load is in-
creased up to 160 Mbps. Compared with the RR-DBA,
the low-latency performance achieved by the other two
DBAs is due to the elimination of the one-way propaga-
tion delay for receiving the buffer occupancy report from
the ONU as well as the waiting time for the DBA process-
ing at the OLT. The ‘memory’ of the LSTM is more suit-
able for the data arrival prediction than the FNN-DBA
and helps to further reduce the latency.

Figure 7 shows the jitter performance comparison
among the three DBA algorithms. It is found that the
LSTM-DBA achieves the lowest jitter in comparison with
the other two DBAs. As the variation of delay between
two consecutive packets is highly affected by network con-
gestion, a significant reduction in network congestion by
the LSTM-DBA helps to reduce the upstream jitter.

Figure 8 shows the packet loss ratio performance com-
parison among the three DBA algorithms. As we can see,
the FNN-DBA and LSTM-DBA achieve a lower packet
loss ratio compared to the RR-DBA. This is due to the
reduction in the transmission waiting time, which allows
ONUs to transmit their received packets more quickly,
and this minimizes the probability of dropping the packets
from the ONU buffer. As shown in Fig. 5, the LSTM

Fig. 5. MSE in the training process.

Table 2. DBA Simulation Parameters

Parameters Values

Application traffic model PPBP

Simulation time 10 s

Max polling interval (all DBAs) 125 μs
Number of RRHs (ONUs) 10

T-CONT per ONU 1

Roundtrip propagation delay 100 μs
ONU queue size (T-CONT buffer) 1 Mbytes

Fig. 6. Upstream delay performance comparison of RR-DBA,
FNN-DBA, and LSTM-DBA.
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can get a more accurate prediction result than the FNN,
and it can clear the ONU buffer data much faster than the
FNN-DBA with a shorter waiting time for the packets to
get served. Therefore, the LSTM-DBA provides a lower
packet loss ratio than the FNN-DBA in Fig. 8.
For PON systems with a low traffic load, FBA can be

used and can achieve the lowest latency for the MFH links
as the packets can be sent from the ONUs to the OLT
immediately without waiting for bandwidth grant. To
check whether the proposed LSTM-DBA can have a per-
formance close to the FBA under this case, simulations
with only one active ONU is conducted. All upstream
bandwidth is allocated to the active ONU for the FBA
while the other three DBAs work as if the other ONUs
are working. All other parameters are the same as above.
From the results shown in Fig. 9, it is evident that the
LSTM-DBA has a lower delay than the FNN-DBA and
RR-DBA and its delay performance is very close to the
FBA. This is due to the accurate prediction of the number
of packets that arrive at the ONU buffer.
In this Letter, a novel predictive DBA method based on

the LSTM for low-latency XG-PON mobile front-haul for
a C-RAN is proposed. In the proposed scheme, the buffer

occupancy report from the ONUs to the OLT is collected
and used for predicting the number of arriving packets
by the LSTM. Compared with traditional DBA, the
LSTM-DBA can eliminate one-way propagation delay.
Simulation results show the performance superiority of
the proposed LSTM-DBA algorithm in comparison to
the RR-DBA and FNN-DBA algorithms in terms of the
upstream delay, jitter, and packet loss ratio. The results
also show that the LSTM-DBA can satisfy the strict
minimum delay requirement for mobile front-haul.

This work was supported by the National Natural
Science Foundation of China (Nos. 61471088 and
61420106011).
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