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Depth from focus (DFF) is a technique for estimating the depth and three-dimensional (3D) shape of an object
from amulti-focus image sequence. At present, focus evaluation algorithms based on DFF technology will always
cause inaccuracies in deep map recovery from image focus. There are twomain reasons behind this issue. The first
is that the window size of the focus evaluation operator has been fixed. Therefore, for some pixels, enough neigh-
bor information cannot be covered in a fixed window and is easily disturbed by noise, which results in distortion
of the model. For other pixels, the fixed window is too large, which increases the computational burden. The
second is the level of difficulty to get the full focus pixels, even though the focus evaluation calculation in the
actual calculation process has been completed. In order to overcome these problems, an adaptive window iter-
ation algorithm is proposed to enhance image focus for accurate depth estimation. This algorithm will automati-
cally adjust the window size based on gray differences in a window that aims to solve the fixed window problem.
Besides that, it will also iterate evaluation values to enhance the focus evaluation of each pixel. Comparative
analysis of the evaluation indicators and model quality has shown the effectiveness of the proposed adaptive
window iteration algorithm.

OCIS codes: 100.6890, 100.3010, 100.2980.
doi: 10.3788/COL201917.061001.

With the development of high-precision measurement
technology, it is an important research direction to make
non-contact and high-precision measurement of the sur-
face morphology of microscopic objects by using high-
resolution microscopic images. Three-dimensional (3D)
reconstruction distortion is the common problem in the
field of image measurement, especially when multi-focus
microscopic image measurement is more prominent, and
distortion of the 3D reconstruction model will seriously
affect the measurement results. Depth from focus (DFF)
deals with the recovery of 3D shapes from multi-focus
image sequences[1,2]. DFF requires searching the best focus
setting that gives the best focus at each point[3,4]. Thus,
each pixel point of an object is required to be well focused
in multi-focus image sequences. According to the current
research status, Mahmood et al. proposed a non-linear fil-
tering method to enhance the focus volume for accurate
depth estimation[5]. Lee et al. proposed an adaptive win-
dow algorithm to enhance the focus measure, where the
algorithm adjusts the window size based on median abso-
lute deviation[6]. Mahmood et al. used the most basic
operator for calculation, but optimized the genetic algo-
rithm for fitting the focus curve to a height curve[7]. Leach
explained the principle of Alicona equipment and pro-
vided a complete solution for the selection of lighting
methods, the selection of the interpolation fitting algo-
rithm of the focus evaluation function, and the way of

dealing with the noise in the model[8]. Aydin and Akgul
suggested an adoptive weighted window that adjusts
the weights using the information from an all-in-focus
image. Thelen discussed the importance of the window size
and suggested an algorithm for the second stage that se-
lects the effective window size from several neighborhood
sizes based on confidence criterion[9]. All methods of focus
evaluation measurement mentioned above only use a fixed
window without considering the impact of iterative evalu-
ation for depth estimation. In this Letter, we discuss the
issue of window selection and enhanced focus evaluation
to recover 3D shapes from the image focus accurately.

There are two main causes of distortion in 3D recon-
struction. The first is the absence of much consideration
in the evaluation of focus pixels during the evaluation
process at the pixel point, and the second is the window
size on the focus evaluation operator being fixed, e.g.,
3 × 3, 5 × 5. Thus, for some pixels, enough neighbor infor-
mation cannot be covered in the fixed window and easily
interfered with by noise, which results in distortion of the
model. For other pixels, the fixed window is too large,
which increases the computational burden.

For example, we use the modified Laplacian (FMSML) to
reconstruct the profile of semi-cylindrical model in the
Alicona standard block. Two causes of distortion in the
reconstruction of the specific form of the model are shown
in Fig. 1.
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Figure 1(b) shows the obvious distortion of the semi-
cylinder reconstruction using the window 3 × 3, while
the distortion of the reconstruction model is partly
improved using the window 5 × 5. Although the increase
in the window will improve the reconstruction distortion
to a certain extent, it will greatly increase computational
burden. From the results of the experiment in Figs. 1(b)
and 1(c), the full focus pixel point cannot be accurately
obtained by one time focus evaluation.
Therefore, the adaptive window iteration algorithm is

proposed to enhance the image focus with the aim of pro-
ducing accurate depth estimation.
Human consideration in determining the clarity of the

image is only limited to information captured by the eye.
However, the computer uses the focus evaluation algorithm
to determine the degree of focus of the image[10,11]. Because
the precision mobile platform moves in the Z direction and
the measured area of the object passes through the depth of
field of the microscope objective, the measured area of the
object will inevitably undergo “out of focus almost in
focus–in focus–almost in focus–out of focus”[12,13].
A focus measure is defined as the quantity for locally

evaluating the sharpness of a pixel. It takes the small local
neighborhood and computes the sharpness of a chosen
center pixel. Since each object point has different surface
characteristics and geometry, the values of the focus mea-
sure of the same object point from different optical set-
tings are compared. Some popular algorithms have been
applied to measure contrast, and one of them is the gray-
level variance (GLV). It comes from the principle that
high variance is intuitively associated with sharp image
structure, while low variance is associated with blurring,
which reduces the amount of gray-level fluctuation[14,15].
Therefore, GLV focus measure can be obtained by taking
the variance of the gray-level values of pixels within a local
window as

FMGLVðx; yÞ ¼
X

ði;jÞ∈Wn×n

½I ðx; yÞ− μ�2; (1)

where Wn×n is the local window with the size of n × n
centered at ðx; yÞ, I ðx; yÞ is the value of the pixel ðx; yÞ,
and μ is the mean value of pixels in Wn×n.

Another type of method is based on derivatives. The
Tenegrad focus measure (TEN)[16,17] is a gradient magni-
tude maximization method that measures the sum of
the squared responses of the horizontal and vertical Sobel
masks, shown in the following:

FMTENðx; yÞ ¼
X

ði;jÞ∈Wn×n

½Gxðx; yÞ2 þGyðx; yÞ2�; (2)

whereGx andGy are theX andY image gradients, respec-
tively, computed by convolving the given image I with the
Sobel operators.

The Laplace operator, a second-order differential oper-
ator in the n-dimensional Euclidean space, is defined as
the divergence (∇) of the gradient ð∇f Þ. Thus, if f is a
twice-differentiable real valued function, then the Lapla-
cian of f is defined by Δf ¼ ∇2f ¼ ∇· ∇f . The latter no-
tations derive from formally writing ∇ ¼

�
∂
∂x1

;…; ∂
∂xn

�
, and

the Laplace operator in two dimensions is given by

∇f ¼ ∂2f
∂x2 þ ∂2f

∂y2 . The Laplace operator, being a point and

symmetric operator, is suitable for accurate shape
recovery. Unlike the previous first-derivative-based
gradient function, the Laplace operator uses the second
derivative as the basis. The reason is that the second
derivative can be further amplified compared to the
first derivative to change the value of the function and
extract the high-frequency components more accurately.
In the original form of the Laplace operator, the second-
order partial derivative of the x direction and the y direc-
tion may be opposite to each other, offset one another, and
produce deviations in the focus of the image

In order to solve the problem of zero Laplacian value
and improve its robustness for weak-textured images, this
operator is reformulated by Nayar and Nakagawa[16,17] to
get a new equation, namely, the sum of the modified Lap-
lacian (SML) as

FMSMLðx; yÞ ¼
X

ði;jÞ∈Wn×n

��
∂2gðx; yÞ

∂x2

�2
þ
�
∂2gðx; yÞ

∂y2

�2�
:

(3)

To further simplify it, the discrete approximation to
Eq. (3) is launched, and a variable spacing step to accom-
modate for possible variations in the texture element sizes
is also added[18–20]. Therefore, the equation is shown as

MLðx; yÞ ¼ j2I ðx; yÞ− I ðx − step; yÞ− I ðx þ step; yÞj
þ j2I ðx; yÞ− I ðx; y − stepÞ− I ðx; y þ stepÞj;

(4)

FMSMLðx; yÞ ¼
X

ði;jÞ∈Wn×n

MLðx; yÞ for MLðx; yÞ ≥ T ;

(5)

Fig. 1. Depth maps of semi-cylindrical model. (a) Alicona semi-
cylinder standard model, (b) semi-cylinder using window size
3 × 3, (c) semi-cylinder using window size 5 × 5.
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where T is a threshold. The higher quality the input image
sequence possesses, the shorter step is the better one
to use.
In order to enhance the ability of focus evaluation to

obtain an accurate 3D model, the adaptive window
iteration algorithm is proposed in this Letter. The algo-
rithm is divided into two parts: in the first part, an adap-
tive window algorithm is used to calculate the size of each
pixel corresponding to the window; in the second part, the
iteration of the focus evaluation value is performed within
each pixel window.
(1) Adaptive window algorithm
The adaptive window algorithm can automatically ad-

just the size of the window according to the neighboring
chromatic aberrations of a pixel. Because of the neighbor-
ing chromatic aberrations, calculation of color images will
increase computational burden. Therefore, this algorithm
will convert color images to gray images and then calcu-
late the neighboring chromatic aberrations of a pixel. In
Fig. 2(a), the window size for both Pixels 1 and 2 is the
same, as shown in Fig. 2(b), and calculating the window
size of Pixel 2 with less neighboring chromatic aberration
than Pixel 1 is appropriately expanded to improve the ac-
curacy in the 3Dmodel recovery until an upper limit of the
window size is met. Similarly, in order to reduce computa-
tional volume, the window size of Pixel 1 is decreased be-
fore the chromatic aberration meets a lower limit.
Specific steps to achieve the adaptive algorithm are as

follows.
Step 1: Set the initial window size to PðEg9 × 9Þ. Set the
maximum value of window size to PmaxðEg17 × 17Þ and
the minimum value of window size to PminðEg3 × 3Þ.
Step 2: Use the initial window for image fusion based on
time domain.
Step 3: Convert time-domain fused color images to gray
images and then calculate the overall average deviation
(Ātotal) of each pixel and average deviation [Āðx; yÞ]of each
pixel in the initial window of the time-domain fused image.
Image size is N ×M , initial window size is n × n:

Atotal ¼
P

ðx;yÞ∈WN×M
Aðx; yÞ

N ×M

¼
P

ðx;yÞ∈WN×M

�
f ðx; yÞ−

P
ði;jÞ∈Wn×n

f ðxi ;yj Þ
n2

�

N ×M
: (6)

Step 4: Updated window.

① if (Aðx; yÞ > Atotal) ⊳Compare Aðx; yÞ with Atotal

② if (P > Pmin) ⊳Compare P with Pmin

③ Wn×nðx; yÞ ¼ P − 1

else

Wn×nðx; yÞ ¼ P ⊳Update window size to Wn×nðx; yÞ
④ else if (Aðx; yÞ < Atotal) ⊳Compare Aðx; yÞ with Atotal

⑤ if (P < Pmax) ⊳Compare P with Pmax

⑥ Wn×nðx; yÞ ¼ P þ 1

else

Wn×nðx; yÞ ¼ P ⊳Update window size to Wn×nðx; yÞ
Step 5: Repeat the above steps to determine the window
size for each pixel.

(2) Iteration algorithm of focus evaluation value
In Figs. 3(a) and 3(b), the image focuses on one area

instead of one point due to the depth of field of the micro-
scope. Therefore, the focus evaluation value of each pixel
located in the focus area is the largest in the image
sequence. A new value of the focus evaluation will be
obtained by adding the focus evaluation value of the
center of the pixel with the focus evaluation value of
the other pixels in the window. By repeating this iteration
process, the highest degree of focus pixels in the image
sequence can be obtained. Thus, the new focus evaluation
values FM� after iteration will be gained:

FM�ðx; yÞ ¼
XN

ði;jÞ∈Wn×nðx;yÞ
½FMðx; y; kÞ�; 1 ≤ k ≤ K ;

(7)

where N is the iteration number, Wn×nðx; yÞ is the win-
dow size of the pixel ðx; yÞ, and K is the total number
of image frames.

For each image frame k from the total of K image
frames, the focus measure FMðx; y; kÞ is computed at each
pixel ðx; y; kÞ in the acquired image sequences by applying
a focus measure on the adaptive window centered at
ðx; y; kÞ. Then, for the point ðx; yÞ, the depthðx; yÞ is com-
puted by taking the frame number that produces the
maximum focus measure from FMðx; y; kÞ:

depthðx; yÞ ¼ argmax
k

½FMðx; y; kÞ�; 1 ≤ k ≤ K : (8)

Because image sequence I is discrete, the focus evalu-
ation curve of pixel ðx; yÞ in the sequence of images con-
sists of discrete points. Therefore, this algorithm uses the
polynomial curve fitting method to get a more accurate
peak position. The focusing evaluation curve is shown
in Fig. 3(c)[8], so we use a polynomial fit to the point near
the maximum, as shown in Eq. (9):Fig. 2. Principle of algorithm for adaptive window size.
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pðzÞ ¼ aZ2 þ bZ þ c: (9)

The exact peak position can be calculated by using the
coefficients a and b, Z ¼ − b

2a .
We compare the reconstruction model of the N th iter-

ation with the reconstruction model of the (N − 1)th iter-
ation. Note that at steady state, the high difference (HD)
between Z ðNÞðx; yÞ and Z ðN−1Þðx; yÞ becomes very small.
So, the HD termination criterion can be written as

HD ¼ f½Z ðNÞðx; yÞ− Z ðN−1Þðx; yÞ�2g1∕2 ≤ δ: (10)

During experimentation, for objects with bevel angles
closer to 90°, we found the value δ ¼ 2. In other situations,
value δ ≤ 1.
Figure 4 is the block diagram of an adaptive window

iteration algorithm.
The experimental platform of this Letter is the HP Z620

workstation, the operating system is Windows 10, and the
software is MATLAB 2011b. The reconstruction object of
this experiment is the profile of the slope, triangle, and
semi-cylinder in the Alicona morphology standard block,

shown in Fig. 5. Table 1 shows the experimental image
acquisition parameters. In order to compare the perfor-
mance of different focus measures quantitatively, the root
mean square error (RMSE), peak signal-to-noise ratio
(PSNR), and correlation coefficient (CC)[6,21] are used. If
f ðx; yÞ is the original image, and gðx; yÞ is the processed
image, then the RMSE, PSNR, and CC are calculated
as follows:

RMSE ¼
�����������������������������������������������������������������
1

XY

XX−1

x¼0

XY−1

y¼0

jf ðx; yÞ− gðx; yÞj2
vuut ; (11)

PSNR ¼ 10 × log10
XY ½max f ðx; yÞ−min f ðx; yÞ�PX

x¼1

PY
y¼1 ½gðx; yÞ− f ðx; yÞ�2 ; (12)

CC ¼
PX

x¼1
PY

y¼1½f ðx; yÞ− f �½gðx; yÞ− g��������������������������������������������������������������������������������������������������������������������
fPX

x¼1

PY
y¼1 ½f ðx; yÞ− f �2gfPX

x¼1

PY
y¼1 ½gðx; yÞ− g�2g

q :

(13)

Figure 6 shows depth maps obtained by three groups of
focus measure operators (FMGLV, FM�

GLV), (FMTEN,
FM�

TEN), and (FMSML, FM�
SML) under varying fixed win-

dow sizes and adaptive window sizes, where FM� itera-
tions are set once. The effectiveness of using the
adaptive window iteration is clear from the results. It can
be observed that the models obtained using the smaller

Fig. 3. Image focus evaluation process. (a) Image sequence acquisition, (b) regional focus, (c) fitting focus evaluation curve.

Fig. 4. Block diagram of the adaptive window iteration algo-
rithm. (a) Calculate the window size for each pixel, (b) focus
evaluation iteration.

Fig. 5. Reconstruct the object. (a) Triangle, (b) slope, (c) semi-
cylinder.
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window of 3 × 3 are noisy and contain spikes. On the other
hand, the use of the larger window size of 11 × 11 has
increased computational burden, and shape distortion
still occurs. The distortion in object shape is clear from
the figures. It means that adding the adaptive window
iteration algorithm can improve the reconstruction result.
Table 2 shows the performance comparison between con-

ventional and proposed methods in terms of RMSE, PSNR,
andCC. The proposedmethod adopts the adaptive window
iteration algorithm, while the traditional method adopts
the fixed window. From Table 2, it is clear that the pro-
posed adaptive window iteration has provided the lowest
RMSE and the highest PSNR and CC values.
As shown in Fig. 7, the 3D slope models are recon-

structed by the FM�
SML focus measure, which is obtained

by using the proposed algorithm to enhance the initial
focus measure FMSML. Table 3 shows the quantitative per-
formance of the proposed method for three objects in
terms of RMSE, PSNR, and CC indicators. The RMSE
values are getting lower along with increasing iterations.
The PSNR and CC values are getting higher along with
increasing iterations. During the experimentation, it is
found that the proposed method costs 3–4 iterations to
achieve convergence. The performance of a focus measure
is usually gauged on the basis of unimodality and monot-
onicity of the focus curve. Figure 8 shows these features
during the iterative process. The focus curves are obtained
during the iterative process for the object point (1108) of

the semi-cylinder. After the three iterations, the focus
curve is becoming sharper and narrower.

Figure 9 shows the relationship between iterations and
HD. The values of δ are 0.5, 1, and 2 for the slope, triangle,

Table 1. Optical Conditions and Acquisition Environment

Acquisition Parameters

Object Magnification Lighting Method Adjacent Image Distance (μm) Image Size Image Number

Slope 5× Dark field 10 672 × 378 37

Triangle 5× Dark field 10 812 × 616 46

Semi-cylinder 5× Dark field 10 791 × 600 40

Fig. 6. Depth maps of triangle: FMGLV (first row), FMTEN (second row), FMSML (third row), fixed window 3 × 3 (first column), fixed
window 7 × 7 (second column), fixed window 11 × 11 (third column), and proposed adaptive window iteration (fourth column).

Table 2. Performance Comparison (AdaptiveWindow ¼
A:W)

Indicator

Method Window RMSE PSNR CC

FMGLV 3 × 3 4.6930 2.6769 0.9432

7 × 7 0.8861 17.3544 0.9681

11 × 11 0.3183 26.0492 0.9787

FM�
GLV A.W 0.2095 29.6829 0.9852

FMTEN 3 × 3 5.7127 0.9692 0.9133

7 × 7 3.8282 4.4460 0.9316

11 × 11 2.7674 7.2644 0.9501

FM�
TEN A.W 1.4702 12.7585 0.9744

FMSML 3 × 3 3.6256 4.9183 0.9266

7 × 7 1.2003 14.5203 0.9363

11 × 11 0.6755 19.5133 0.9688

FM�
SML A.W 0.2560 27.9401 0.9816
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and semi-cylinder, respectively. The process of this
iteration terminates when HD is less than δ. As shown
in Fig. 9, after three iterations, the decrease in HD tends
to be flat and reaches a relatively stable state. If iterations
continue to increase, the quality of the model will only be
slightly improved and the computational burden will

increase. The RMSE is the most accurate and highest
applied value in many indicators. Therefore, this Letter
uses RMSE to judge the model quality and analyze the
iterations. As shown in Fig. 10, the RMSE values are get-
ting lower with increasing iterations, and they are gradu-
ally stabilized.

Table 3. Changes of RMSE, PSNR, and CC Indicators in the Adaptive Window Iteration Algorithm (Focus
Measure ¼ FM�

SML)

Iterations

Object Window Indicator First Iteration Second Iteration Third Iteration Fourth Iteration

Slope A.W RMSE 1.4741 0.4820 0.2238 0.2072

PSNR 12.0244 21.7336 33.5035 34.7507

CC 0.9219 0.9491 0.9639 0.9729

Triangle A.W RMSE 0.7711 0.4314 0.3675 0.3554

PSNR 18.3493 23.3944 24.7854 25.0765

CC 0.9385 0.9621 0.9756 0.9801

Semi-cylinder A.W RMSE 2.6153 2.3402 2.2311 2.1084

PSNR 7.6158 7.8902 8.3048 8.7961

CC 0.9456 0.9551 0.9602 0.9713

Fig. 8. Focus curves during the iterative process for the object point (1108) of the semi-cylinder.

Fig. 7. 3D shape reconstruction of objects: slope (first row), triangle (second row), semi-cylinder (third row), first iteration (first
column), second iteration (second column), third iteration (third column), fourth iteration (fourth column).
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In this Letter, we proposed the adaptive window itera-
tion algorithm to enhance the focus evaluation for accurate
3D shape recovery. The algorithm can be divided into two
parts: the first part uses the adaptive window algorithm to
automatically adjust the window size according to the gray
difference within the window in the focus evaluation proc-
ess; the second part enhances the accurate focus evaluation
of each pixel by iterative focusing values. The proposed
method has been demonstrated by using multi-focus image
sequences of Alicona standard objects. In addition, the
value of the iteration termination condition δ can be
changed according to actual needs. Comparative analysis
has demonstrated the effectiveness of the proposed algo-
rithm, as compared to traditional methods.

This work was supported by the National Natural Sci-
ence Foundation of China (No. 91748122), the National
Science Foundation for Young Scientists of China
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