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Vascular Doppler optical coherence tomography (DOCT) images with weak boundaries are usually difficult for
most algorithms to segment. We propose a modified random walk (MRW) algorithm with a novel regularization
for the segmentation of DOCT vessel images. Based on MRW, we perform automatic boundary detection of the
vascular wall from intensity images and boundary extraction of the blood flowing region from Doppler phase
images. Dice, sensitivity, and specificity coefficients were adopted to verify the segmentation performance. The
experimental study on DOCT images of the mouse femoral artery showed the effectiveness of our proposed
method, yielding three-dimensional visualization and quantitative evaluation of the vessel.
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Vessel condition estimation has been a hot topic for a long
time. Optical coherence tomography (OCT) is a new im-
aging modality with high resolution[1,2], which can combine
with the Doppler technique to provide real-time structures
and flow images of vessels. Recently, phase images of
Doppler OCT (DOCT) were used to monitor the flow
status of vessels to assess the surgical outcome of micro-
vascular anastomosis, which is the foundation of plastic
and reconstructive surgery[3]. Driven by the intraoperative
application, single vessel segmentation of DOCT images is
of great importance.
Due to the strong scattering of blood within the vessel

and depth dependent sensitivity roll-off of OCT imaging
system, in vivo extra-vascular imaging suffers from low
contrast and weak boundaries at the bottom part of
the vessel. Currently, segmentation methods of OCT
images include four categories. The first uses the inten-
sity images in tissue segmentation, such as the retinal
vessels[4]. The Chan–Vese model is widely used in the
second category, such as segmentation of intra-retinal
layers[5]. However, this model depends on the position of
the initial contour, and segmentation results are usually
influenced by high noises. The third is the machine learn-
ing methods. For example, the support-vector machine
(SVM) classifier is used in flow segmentation[6]. Layer-
specific edges are segmented by the learning algorithm
and trained with the histogram of oriented gradients fea-
tures, which require learning and training procedures, and
thus a large amount of time is inevitable. The fourth is the

graph method, which has been widely used in OCT images
segmentation[7], and this segmentation method usually
builds an appropriate cost function to distinguish different
tissue structures. Therefore, the segmentation problem is
transformed into an optimization problem. It takes a long
computation time to find the optimal solution.

Grady proposed an effective segmentation algorithm
based on random walks[8], which can detect the weak
boundary in images and consume little time. However,
for extra-vascular DOCT imaging, direct implementation
of the random walks algorithm still has difficulty in
detecting the vascular boundary, as strong blood flow
scattering induced attenuation, depth dependent sensitiv-
ity roll-off, detector saturation effect, and speckle noises
have seriously degenerated image contrast and generated
weak boundaries at the bottom part of the image.

To accurately segment DOCT vessel images from extra-
vascular imaging, we proposed a modified random walk
(MRW) algorithm, which uses the regularization D2x to
obtain a new optimization formulation. This MRW algo-
rithm will create a probability map with superior quality
compared with the random walks algorithm, especially for
the weak boundary.

The random walks segmentation algorithm originated
from the discrete potential theory and electrical circuits[9].
In Grady’s works, the general image segmentation pro-
cedure is as follows: firstly, the small seed points with
user-defined labels are given, and then the solution of
the Dirichlet integral can quickly determine the probability

COL 17(5), 051001(2019) CHINESE OPTICS LETTERS May 10, 2019

1671-7694/2019/051001(6) 051001-1 © 2019 Chinese Optics Letters

mailto:jyang@bit.edu.cn
mailto:jyang@bit.edu.cn
mailto:jyang@bit.edu.cn
http://dx.doi.org/10.3788/COL201917.051001
http://dx.doi.org/10.3788/COL201917.051001


of the random walking points firstly to reach one of the
pre-labeled pixels. Moreover, by assigning each pixel to
the label for which the biggest probability is calculated,
the image segmentation results are finally determined.
It needs to be pointed out that regularization is used as

the Dirichlet integral for obtaining probability map and
segmentation results, which are defined as follows:

JðxÞ ¼ 1
2

Z
Ω
j∇xj2dΩ: (1)

However, the use of regularization ∇x can generate a
probability map with the staircase effect[9], which can
cause poor segmentation. To handle this problem, we
introduce a new Dirichlet integral

JðxÞ ¼
Z
Ω
jD2xj2dΩ; (2)

where D is the differential operator, which denotes
gradient operator ∇. x denotes the probability of a pixel
reaching the seed point. According to the Ref. [9], D2

represents the combinatorial Laplacian operator, and thus
Eq. (2) can become

JðxÞ ¼ ðLxÞ2ðLxÞ ¼ xT ðLTLÞx ¼ xTQx; (3)

whereQ ¼ LTL, and L is Laplacian matrix. It may assume
that Q and x are ordered without loss of generality. Note
that Q is a sparse and semi-definite matrix. Therefore, the
set of pixels can be divided into seed and unseeded pixels,
and the corresponding transfer probability has two parts
xM ; xU , respectively. Thus, Eq. (3) can be decomposed into

J ½xU � ¼
1
2
½ xTM xTU �

�
QM B
BT QU

��
xM
xU

�
: (4)

Equation (4) takes the derivative of xU and then obtains
the following equation:

QUxU ¼ −BTxM : (5)

So, each pixel has its own transition probability.
The segmentation result y for two kinds of seeds is also
determined through the following equation:

y ¼
�
1; x ≥ 0.5
0; x < 0.5

: (6)

From the above process, one can see that the segmen-
tation results depend on the probability map (probability
x of every pixel). Thus, the selection of matrix Q is very
important. In Eq. (3), Laplacian matrix L is defined as

Li;j ¼
8<
:
di ; i ¼ j
−wij ; i; j are adjacent
0; others

; (7)

where di ¼
P

jwi;j , and wi;j is the weighting value of
pixels i and j, which is defined in Ref. [10], and

wij ¼ exp½−βðgi − gjÞ2�½1− expð−αzÞ�; (8)

where αð> 0Þ is the estimated attenuation coefficient. β is
a free parameter. In this work, the β value is 90. gi and gj
are image intensity values of pixels i and j. z denotes the
pixel position in the vertical direction.

Due to the imaging depth limitation of the DOCT
system, there is a low contrast in the position of a large
z value, such as DOCT images of Fig. 1(a). To increase
the success of the edge extraction at the low contrast
position of DOCT images, Eq. (8) uses 1− expð−αzÞ to
compensate the intensity value caused by the DOCT
structure image signal attenuation. In general, the DOCT
structure image suffers from depth dependent attenua-
tion; thus, the attenuated signal I is given by

I ¼ I 0 expð−αzÞ; (9)

where I 0 is the initial intensity. To realize the automatic
estimation of the attenuation coefficient α for each image,
we use Eq. (9) as the prediction model to get the coeffi-
cients automatically.

The whole segmentation process of the MRW algorithm
involves two parts: boundary detection of the vessel wall
from the intensity image and boundary exaction of the
blood flow region from the phase image. Note that the boun-
dary extraction of the vessel wall is divided into two stages,

Fig. 1. MRW algorithm segmentation procedure of intensity image. First stage shows the process of upper boundary segmentation.
Second stage shows the process of bottom boundary segmentation. Then, they are combined to create an intact boundary mask
(scale bar: 500 μm).
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where the MRW algorithm is applied to detect the upper
and bottom boundaries of the vessel wall, respectively.
The segmentation object is mouse artery images of the

Fourier domain OCT (FDOCT) system[11]. To reduce the
noise influence of Fig. 1(a), we use the sparse and repre-
sentations method[12] to address the noise, as shown in
Fig. 1(b). However, the filtered image still shows blurred
edges, especially for the bottom boundary of the blood
vessel. If the filtered image is used as the segmentation
object, low contrast between the boundary and back-
ground area will still cause poor segmentation results.
To improve the segmentation accuracy, we use the prob-
ability map [see Fig. 1(c) or 1(f)] of the MRW algorithm as
the segmentation object, which can provide a higher con-
trast image than the original image [Fig. 1(a)] and
filtered image [Fig. 1(b)].
During theMRWprocess, two kinds of seeds are selected

for the MRW algorithm. It is important to select the seed
point’s position in the intensity image, especially for the
weak vessel boundary. Furthermore, seed points are two
classes of pixels, instead of only two pixels. For the first
segmentation stage of the vessel wall, the first kind of seed
points is located at the top of the intensity image [see the
green line in Fig. 2(a)], and the second kind of seed points is
distributed at the bottom of the intensity image [see the

blue line in Fig. 2(a)]. Then, by using the MRW algorithm,
the probability map is generated in Fig. 1(c). Finally, the
upper boundary can be well detected [see Fig. 1(d)].

In the second stage of the vessel wall process, the selec-
tion of seed points still includes two classes. The seed
points of the first class derive from the upper boundary
[see the green line in Fig. 2(b)]. The seed points of the
second class are located near the bottom of the intensity
image [see the blue line in Fig. 2(b)]. Under these two
classes of seed points and the MRWalgorithm, a new prob-
ability map of the intensity image is created, as shown in
Fig. 1(f). Then, this new probability map once again is
used as the segmentation object, and the MRW algorithm
adopts seed points in the position of Fig. 2(b) to detect the
bottom boundary, as shown in Fig. 1(g). Finally, segmen-
tation lines of the probability map in Figs. 1(e) and 1(h)
were mapped to the intensity image of Fig. 1(a) after using
the morphological operation (open operation and select
maximum connected domain) for the region between the
two boundaries where the vascular boundary [Fig. 1(i)]
and segmentation mask [Fig. 1(j)] are obtained.With these
processes, the boundary detection of the vessel wall is
completed.

The phase image [see Fig. 3(b)] shows a lot of
random noise. It makes segmentation difficult. The mask

Fig. 2. Selection of seed points in the segmentation stages for OCT intensity image. (a) Two kinds of seeds are selected for the upper
boundary segmentation in the first stage, marked by green and blue lines, respectively. (b) Two kinds of seeds are selected for the
bottom boundary segmentation in the second stage, marked by green and blue lines, respectively (scale bar: 500 μm).

Fig. 3. Segmentation procedure of the phase image. We combined phase image with a boundary mask to remove the background,
and then made use of the threshold condition to get the blood flow region (scale bar: 500 μm).
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[see Fig. 3(a)] from the intensity segmentation process can
remove the background interference of the phase image,
which makes the segmentation of the phase image easy,
as shown in Fig. 3(c). It is apparent that there is no
Doppler signal between the vessel wall and blood flow.
Thus, in the segmentation process of the phase image,
we treat the pixels satisfying the simple threshold condi-
tion jφj ≥ 2.5 (where φ is the phase value) as one kind of
the seeds. In addition, the other kind of seeds is the pixels
located in the segmentation line of the intensity image.
Similarly, by using the MRW algorithm, the probabi-
lity map of the blood flow region is obtained, as shown
in Fig. 3(d). Then, the segmentation line is extracted
[see Fig. 3(e)]. Hence, boundaries of the vessel wall and
blood flow region are indicated in Fig. 3(f).
In the MRW process, we use the regularization D2x to

optimize the algorithm. To illustrate the MRW advan-
tage, we use ∇x andD2x as two regularizations to segment
intensity images. Figure 4 shows the comparison results of
the second segmentation stage in the intensity images
[from Figs. 1(f) to 1(g)]. Figures 4(a) and 4(c) are proba-
bility maps after using the regularizations of ∇x and D2x,
respectively. Figures 4(b) and 4(d) are corresponding seg-
mentation results. From the comparison, one can see that

the probability map of regularizations ∇x has the staircase
effect in vessel tissue. For the two classifications, the criti-
cal point of probability is x ¼ 0.5, so the staircase effect of
Fig. 4(a) causes the wrong segmentation result [see
Fig. 4(b)]. On the contrary, Fig. 4(c) shows that the
regularization D2x has a smoother probability map than
∇x, and thus the corresponding segmentation result
becomes more accurate [see Fig. 4(d)]. Therefore, the
MRW algorithm can provide a more suitable probability
map for the weak boundary accurate segmentation. We
assume the reason might be that the combinatorial Lap-
lacian operator as a second-order operation reflects pixel
intensity changes in more locations compared to the first-
order gradient operator, which only reflects the pixel
intensity changes in adjacent positions.

To verify the validity of the MRW algorithm, we also
applied MRW to segment the mouse artery images from
the FDOCT system[11], where each B-scan image consisted
of 1000 A scans, and each C scan consisted of 250 B scans.
To exhibit the segmentation capability in the different
blood flow regions, we select four groups of OCT images
from the various positions of mouse blood vessels, as
shown in Fig. 5. It shows the phase images from a healthy
vessel [see Fig. 5(a-2)] and three group blood vessels

Fig. 4. Probability map and corresponding segmentation results using different regularization. (a) Probability map using the
regularization∇x. (b) Segmentation result of (a). (c) Probability map using the regularizationD2x. (d) Segmentation result of (c) (scale
bar: 500 μm).

Fig. 5. Segmentation results of different OCT frames. (a-1)–(d-1) OCT intensity images of frames 1, 65, 131, 192, and segmentation
results, respectively. (a-2)–(d-2) OCT phase images of frames 1, 65, 131, 192, and segmentation results, respectively (scale bar: 500 μm).
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[see Figs. 5(b-2)–5(d-2)] with different seriousness of
arteriosclerosis, and corresponding structure images of the
vessels are Figs. 5(a-1)–5(d-1). The weak boundary of the
vessel bottom can be successfully detected in the four
group intensity images. Under the mask from the intensity
image, the phase image with background removal is
segmented, and accuracy and the boundary of the blood
flow region are well captured in Figs. 5(a-2)–5(d-2).
To further evaluate the performance of MRW algorithm

in segmentation of DOCT blood vessel images, we com-
pared our segmentation results with ground truth of the
manual segmentation results. The quantitative evaluation
parameters contain the Dice coefficient (DC), sensitivity
coefficient (SNC), and specificity coefficient (SPC)[13],
which are computed as follows:

DC ¼ 2TP
2TPþ FPþ FN

;

SNC ¼ TP
TPþ FN

;

SPC ¼ TN
TNþ FP

; (10)

where TP is true positive, FP is false positive, FN is false
negative, and TN is true negative. DC is the ratio of the
intersection area between the segmented region and
the manual region. SNC refers to how many pixels in
the manual region are correctly segmented, and SPC
measures how many pixels are outside the manual region.
The evaluation parameters are computed as shown

in Table 1. For this process, it was conducted through
MATLAB R2013 in a computer with the Intel ®Core™
i7-4790 processer at 3.6 GHz and 8 GB random access
memory (RAM). The values of DC and SNC are above
90%. All of the values of SPC are nearly 100%; thus, these
values indicate that almost no pixels fall to the outside of
manual regions. It illustrates that the segmentation
results are basically consistent with the manual process
results.
In addition, we completed the segmentation task of

250 frame DOCT images automatically. These two-
dimensional (2D) images are used to reconstruct the
three-dimensional (3D) vessel wall with ImageJ software
after they are registered by the sub-pixel image registration
algorithm[14,15], as shown in Fig. 6. Figures 6(a) and 6(b)
are the upper and bottom parts of the vessel wall, respec-
tively. From 3D visualization, we can clearly see that there

is thrombosis existence at positions 1 and 2, which
indicates the severity of vessel condition. It is helpful to
evaluate vessel stenosis and show the thrombotic morpho-
logy intuitively.

Quantitative analysis was performed after segmenta-
tion to help with the objective evaluation of the surgical
outcome. We analyzed the blood flow area and blood ves-
sel radius along the blood flow axis based on the segmen-
tation results of 250 frame DOCT images. Thrombosis
and stenosis will generate a small blood flow area that
is detrimental to long term success. Figure 7(a) shows

Table 1. Evaluation Parameter Comparison Between Segmentation Results and Ground Truth

Group Frame 1 Frame 65 Frame 131 Frame 192

Image Type Intensity Phase Intensity Phase Intensity Phase Intensity Phase

DC (%) 96.60 95.66 96.55 94.98 97.11 92.31 96.12 95.13

SNC (%) 98.79 92.54 97.04 91.01 98.95 90.97 97.96 92.08

SPC (%) 99.46 99.93 99.53 99.96 99.42 99.61 99.39 99.88

Fig. 6. 3D reconstruction of the vessel. (a) The upper part of the
blood vessel. (b) The bottom part of the blood vessel. The arrows
point at the thrombosis position.

Fig. 7. (a) Blood flow area variation along the blood flow axis.
(b) Blood vessel radius variation along the blood flow axis.
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the inner blood flowing area variation along the vessel flow
axis. It clearly shows that the blood flow area becomes
narrower when thrombosis occurs near the position of
0.4 and 0.75 mm. The mean radius of the blood flow area
in 10 angular directions at one cross-sectional image and
their standard deviation are shown in Fig. 7(b). Along the
blood flow direction, the variation of vessel radius is large.
For positions with thrombus, the inner radius of the blood
vessel becomes significantly smaller. In addition, a large
radius standard deviation value is more prone to turbu-
lence generation. Later, these physical parameters can
be fed into the computational fluid dynamics (CFD)
model to simulate the blood flow of the vessel and analyze
wall shear stress at the vessel[16], especially for arteries with
serious stenosis or thrombosis[17], in the future work.
In this present work, we developed an MRW method

with a new regularization D2x for extra-vascular DOCT
image segmentation, which improves the segmenta-
tion results of weak boundaries. Using this method, we
automatically completed the segmentation process of
250 frame DOCT mouse artery vessel images. Moreover,
utilizing these segmentation results, 3D reconstruction of
the vessel, and quantitative analysis of the blood flow area
and the radius variation were completed. We believe this
work will contribute to the construction of objective meth-
ods for the anastomosis surgery assessment.
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