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Echinococcosis—a parasitic disease caused by Echinococcus granulosus or Echinococcus multilocularis larvae—
occurs in many regions in the world. This disease can pose a serious threat to public health and thus requires a
convenient and cost-effective method for early detection. So, we developed a novel method based on visual
saliency and scale-invariant features that detects the tapeworm parasites. This method improves upon existing
bottom-up computational saliency models by introducing a visual attention mechanism. The results indicated
that the proposed method offers a higher level of both accuracy and computational efficiency when detecting
Echinococcus granulosus protoscoleces, which in turn could improve early detection of echinococcosis.
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doi: 10.3788/COL201917.041703.

Echinococcosis is a serious parasitic disease caused by
Echinococcus granulosus or Echinococcus multilocularis
larvae that affects the health of people and animals. This
disease is especially common in pastoral areas[1]. China, in-
cluding the Xinjiang Uygur Autonomous Region, has a
high incidence of echinococcosis, and select areas exhibit
a persistent high prevalence trend[2,3]. Effective prevention
and control of echinococcosis requires an expedited confir-
mation of drug efficacy; however, existing drug evalua-
tions and use rationales require further improvement.
Accurate in vitro recognition of the tapeworm’s larval pro-
toscoleces or hydatids and assessment of their survival sta-
tus (living or nonliving) is important while evaluating the
efficacy of new drugs.
Eosin exclusion is a common method for detecting the

viability of protoscoleces in vitro. This method is simple,
economical, and rapid to apply and has been widely used
in the development of new drugs to treat hydatid diseases
of the liver[4–6]. Eosin exclusion uses an eosin staining sol-
ution or dyestuff to distinguish living and nonliving cells in
a membrane. The nonliving cells are readily permeated
and stained by the dyestuff, while the living cells resist
dye penetration. By using a microscope to examine
dynamic and still images of the membrane following this
procedure, the survival status of the larvae can be strictly
monitored through human observation.
Despite its advantages, eosin exclusion can be time

consuming and result in larvae survival rate errors
attributable to the manual monitoring process by human
observers. The development of intelligent recognition
capabilities could increase the accuracy of the overall eosin
exclusion method. However, no such studies combining

intelligent recognition capabilities and eosin exclusion
were reported in the literature.

Although we found no direct application to eosin ex-
clusion, a number of studies have applied intelligent rec-
ognition algorithms to conventional egg recognition
efforts. For example, Rema et al.[7] used an active contour
model to effectively realize segmentation of a microscopic
image of human parasite eggs against a complex back-
ground. Alternatively, Chen et al. proposed a hybrid seg-
mentation algorithm for parasite egg images based on
morphological filtering[8]. By improving the morphologi-
cal filtering and combining the convex packet operation,
the image of parasite eggs was effectively segmented.
More recently, Lin et al. used scale-invariant feature
transform (SIFT) descriptor to examine the total extrin-
sic extracellular matrix[9]. Most recently, Zhang et al.
used an improved k-nearest-neighbor classifier to identify
and classify parasitic eggs in microscopic images of fecal
matter[10].

The previous research has collectively advanced the
state of knowledge regarding egg recognition technology
in micromedicine. However, each of the proposed methods
indicates only the need to intervene without explicitly re-
flecting the range of image characteristics or their poten-
tial overlap.

In response to these methodological shortcomings, we
developed a novel method based on computer vision
and machine learning that detects protoscoleces parasites
using eosin exclusion. Using this method, areas with sus-
pected live Echinococcus granulosus protoscoleces are first
identified and outlined. Next, using sample images of
the suspected parasites, the SIFT algorithm is used to
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extract common features from the images, and the
k-means algorithm is used to cluster them. Finally, sup-
port vector machine (SVM) learning is applied, and the
previously identified suspicious areas are subsequently
classified based on parasite counts. The efficacy of this
proposed method was validated with experimental
methods.
The results of this study may improve the accuracy of

eosin exclusion when detecting Echinococcus granulosus
protoscoleces, which in turn could improve live detection
of echinococcosis, contribute to the development of related
drugs for echinococcosis treatment and prevention, and
ultimately improve public health. In addition, the results
of this study may contribute to the state of knowledge re-
garding target segmentation and recognition in the field of
image processing[11].
The human visual system possesses image understand-

ing, recognition, and processing capabilities. In the image
processing field, efforts are focused on simulating the
human visual system using computers and establishing
a visual attention model. Human visual observation is se-
lective. Broadly speaking, images contain a variety of in-
formation that can be perceived by humans, such as color,
texture, and brightness. However, not all information is of
interest, and as such, not everything that we see is proc-
essed by the brain. To be effective, computer simulation of
human visual observation must quickly locate salient re-
gions and extract relevant images.
At present, four primary models of visual saliency exist

that were developed by (1) Hou and Zhang, (2) Hu, Rajan,
and Chia, (3) Stentiford, and (4) Itti, Koch, and Niebur.
Among these four models, the Itti model was determined
to be most appropriate for the egg recognition task in this
study because it simulates human perception and extracts
regions of interest based on differences between the target
and background[12]. The method proposed in this study
uses a modified Itti model.
Visual saliency can be graphically depicted using maps.

When developing visual saliency maps, the Itti model ex-
tracts primary characteristics, resolves multiple features
and multidimensional visual space using center-surround
methods, filters and obtains feature maps using pyramids
with a depth of up to nine levels, and compounds maps
using fusing and computing methods. The resultant visual
saliency maps include brightness, color, and directional
characteristics.
Four broadly tuned color channels can be created as

follows:

R ¼ r − ðg þ bÞ∕2;
G ¼ g − ðr þ bÞ∕2;
B ¼ b− ðr þ gÞ∕2;
Y ¼ ðr þ gÞ∕2− jr − gj∕2− b; (1)

where r, g, and b are the red, green, and blue channels of
the image, RG ¼ jR−Gj, and BY ¼ jB − Y j. Four

corresponding Gaussian pyramids ½RðδÞ;GðδÞ;BðδÞ;Y ðδÞ�
can be created from these color channels. An intensity
image (I ) can be obtained as follows: I ¼ ðr þ g þ bÞ∕3.

For the multiscale feature map, a central periphery dif-
ferential operation is performed, and the feature graph is
subtracted under different scales (σ). With c ∈ f2; 3; 4g
and s ¼ c þ δ, δ ∈ f3; 4g, where c and s represent pyramid
levels, a brightness feature map can be generated as
follows:

I ðc; sÞ ¼ jI ðcÞΘI ðsÞj: (2)

Similarly, a color feature map can be generated as
follows:

RGðc; sÞ ¼ j½RðcÞ−GðcÞ�Θ½GðsÞ− RðsÞ�j; (3)

BY ðc; sÞ ¼ j½BðcÞ− Y ðcÞ�Θ½Y ðsÞ− BðsÞ�j: (4)

The Θ symbol indicates that the pixel difference can be
obtained when the pyramid levels increase from s to c.

Providing good directional selectivity, the Gabor filter
is suitable for the extraction of directional features in an
image. Local orientation information can be obtained from
I using oriented Gabor pyramids ½Oðσ; θÞ�, where σ ∈ ½0; 8�
represents the scale, and θ ∈ f0°; 45°; 90°; 180°g is the pre-
ferred orientation. The Gabor filter can be formulated as
follows:

gðx0; y0Þ ¼ exp
�
−

x20
2δ2x0

−
y20
2δ2y0

�
½cosð2πf x0Þ

þ j sinð2πf x0Þ�; (5)

where

x0 ¼ x cos θ þ y sin θ: (6)

A directional feature map can be subsequently gener-
ated as follows:

Oðc; s; θÞ ¼ jOðc; θÞΘOðs; θÞj: (7)

After the eigenvalues of each feature map are measured
using nonlinear normalization, the brightness, color, and
directional feature maps must be added separately to form
corresponding brightness, color, and directional saliency
maps. Formulations for the brightness, color, and direc-
tional saliency maps, respectively, are as follows:

I
−

¼ ⊕
4

c¼2
⊕
cþ4

s¼cþ3
N ½I ðc; sÞ�; (8)

C̄ ¼ ⊕
4

c¼2
⊕
cþ4

s¼cþ3
fN ½RGðc; sÞ� þ N ½BY ðc; sÞ�g; (9)

O
−

¼
X

θ∈f0°;45°;90°;135°g
N
�
⊕
4

c¼2
⊕
cþ4

s¼cþ3
N ½Oðc; s; θÞ�

�
: (10)
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These three individual feature saliency maps are lin-
early weighted and combined to form a total visual
saliency map[11] as follows:

S ¼ ½NðI
−

Þ þ N ðC
−

Þ þ N ðO
−

Þ�∕3: (11)

In the total visual saliency map, each target competes
for attention and focus. A winner-take-all mechanism is
used to detect the point of highest salience in the
map at any given time, and draws the focus of attention
towards this location. Figure 1 presents an actual
microscopic image of a parasite sample and the corre-
sponding visual saliency map produced with the
Itti model.
In this study, the Itti visual saliency model, which con-

siders the brightness, color, and directional characteristics
of an image, was originally selected to complement eosin
exclusion methods, which enhance image color. However,
the accuracy of the Itti model was low when extracting the
image’s saliency region, and it was difficult to extract the
entire area of interest.
In an effort to improve accuracy, we modified the Itti

model to reflect the human eye’s different sensitivities to
different saliency features. Considering the microscopic
image of Echinococcus granulosus protoscoleces in Fig. 1,
brightness and color characteristics were determined to
be more important than directional characteristics. As
such, directional characteristics were ignored, and only
the brightness and color saliency maps were linearly
weighted and combined to form a total visual saliency
map intended to improve the accuracy of parasite
recognition.
The method proposed in this study also includes the use

of the SIFT algorithm to extract common features from
the images. The features are highly distinctive and invari-
ant to image scale and rotation[13]. The SIFT algorithm in-
cludes four primary steps: (1) detecting extreme points in
scale space, (2) filtering and locating keypoints,
(3) assigning an orientation to each keypoint, and (4) de-
termining a keypoint descriptor.
To obtain stable and effective extreme points, we first

build a scale pyramid using a scale-space kernel based on
the Gaussian function as follows:

Gðx; y; σÞ ¼ 1
2πσ2

e−ðx2þy2Þ∕2σ2 : (12)

The scale space of an image can then be defined as a
function ½Lðx; y; σÞ� that is produced from the convolution
of a variable-space Gaussian ½Gðx; y; σÞ� with an input

image ½I ðx; yÞ�. This relationship can be formulated as
follows:

Lðx; y; σÞ ¼ Gðx; y; σÞ � I ðx; yÞ; (13)

where the � symbol represents the convolution operation.
To efficiently detect stable keypoint locations in scale

space, we use scale-space extrema in the difference-of-
Gaussian function convoluted with the image ½Dðx; y; σÞ�,
which can be computed from the difference of two nearby
scales separated by a constant multiplicative factor (k) as
follows:

Dðx; y; σÞ ¼ Lðx; y; kσÞ− Lðx; y; σÞ: (14)

Figure 2 graphically depicts this relationship. This
method has proven effective in extracting stable extreme
points.

A large number of extreme points are likely detected in
scale space during the first step of the SIFT algorithm.
These points need to be further filtered and localized to
ensure fully reliable feature points. During this second
step, the position and scale of the keypoints are accurately
determined by fitting three-dimensional functions. Unsta-
ble edge points and keypoints with low contrast are
removed.

After the keypoints are filtered and localized, each re-
maining keypoint is assigned a location based on local im-
age gradient directions. For each image sample ½Lðx; yÞ� in
scale space, the gradient magnitude ½mðx; yÞ� and orienta-
tion ½θðx; yÞ� are precomputed using pixel differences as
follows:

mðx; yÞ ¼
�������������������������������������������������������������������������������������������������������������������������
½Lðx þ 1; yÞ− Lðx − 1; yÞ�2 þ ½Lðx; y þ 1Þ− Lðx; y − 1Þ�2

q
; (15)

θðx; yÞ ¼ arctanf½ðLðx þ 1; yÞ− Lðx − 1; yÞ�∕½Lðx; y þ 1Þ− Lðx; y − 1Þ�g: (16)

The first three steps of the SIFT algorithm produce a set
of feature points, each described by unique locational,
scalar, and directional characteristics. The final step is

Fig. 1. (a) Microscopic image of Echinococcus granulosus proto-
scoleces and (b) the corresponding visual saliency map produced
with the Itti model.
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to determine a keypoint descriptor for the local image
region[13]. A keypoint descriptor is determined by comput-
ing the gradient magnitude and orientation at each image
sample point in a region around the keypoint location.
Figure 3 illustrates this process.
The method proposed in this study and applied to the

recognition of Echinococcus granulosus protoscoleces
relies upon the combination of the modified Itti model
that provides visual saliency and the SIFT algorithm
that extracts scale-invariant features to enhance the
accuracy of parasite recognition when using eosin
exclusion. Figure 4 provides a stepwise overview of this
proposed method.
Using these combined methods, a clear egg image and

the center points of any suspected living eggs can be ob-
tained (all suspected living eggs are cut at their center
points to produce sample slices). The SIFT algorithm
can be used to extract the scale-invariant features of
the known living eggs and produce a scale-invariant fea-
ture vector. The k-means clustering algorithm can next be
used to cluster the vectors, generating an eigenvector with
k dimensions. This feature vector can be subsequently
used to train an SVM and develop an SVM classifier.
The SVM classifier can now be used to detect living
(Yes) and nonliving (No) eggs based on the scale-invariant
features provided. These classification results can be ap-
plied to the original image to determine the final egg rec-
ognition results.

To validate the efficacy of the method proposed in this
study, we performed an experiment using MATLAB
R2016a and microscopic images of parasites treated by
the eosin exclusion method at the Xinjiang Medical
University. The living parasite image samples included
different targets and backgrounds. Subsets of 60 living
tapeworm parasites and background images were used
to develop an SVM classifier. The SVM classifier was sub-
sequently used to detect living/nonliving parasites based
on scale-invariant features.

As noted previously, the method proposed in this study
and applied to the recognition of Echinococcus granulosus
protoscoleces relies upon the combination of the modified
Itti model that provides visual saliency and the SIFT al-
gorithm that extracts scale-invariant features to enhance
the accuracy of parasite recognition when using eosin

Fig. 2. Graphical depiction of the difference-of-Gaussian
function.

Fig. 3. Keypoint descriptor determination process.

Fig. 4. Proposed method for detecting Echinococcus granulosus
protoscoleces based on visual saliency and scale-invariant
features.
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exclusion. Figure 5 shows intermediate experimental re-
sults from these combined methods, including the final
SVM classification results applied to the original image.
Figure 6 provides a magnified view of Fig. 5(c). In the

original image, 23 intact tapeworm parasites are visible,
one of which is a nonliving tapeworm parasite. The
method proposed in this study identified 21 living tape-
worm parasites, resulting in a parasite recognition rate
of 95.4%. This recognition rate is sufficiently high to meet
hospital inspection requirements.
Additional comparative results further demonstrated

the efficacy of the proposed method. First, we compared
the parasite recognition rates for methods using the
conventional and the proposed modified Itti models
for visual saliency. Table 1 details the results of this com-
parison. The egg parasite recognition rates using conven-
tional and proposed methods were 81.8% and 95.4%,
respectively. The modified Itti model’s visual saliency
map, focusing on brightness and color features, better
distinguishes parasite characteristics and can more accu-
rately mark suspicious targets.
Next, we considered the transferability of the proposed

method by applying it to three different eosin exclusion
test images containing living parasites and comparing
the resultant parasite recognition rates. Table 2 details
the results of this comparison. In each case, the parasite
recognition rates reached or exceeded 90% for parasite
counts ranging from 22 to 50.
These collective results demonstrated that the

proposed method, based on visual saliency and

scale-invariant features, offers a higher level of accuracy
when detecting Echinococcus granulosus protoscoleces
compared with conventional methods. Accuracy
levels achieved were sufficient to meet hospital clinical test
requirements. In addition, the proposed method offers a
higher level of computational efficiency, reducing both
the workload and error potential attributable to manual
counts performed by human observers.

In response to the need for a convenient and cost-
effective method for early detection of echinococcosis, we
developed a novel method based on computer vision and
machine learning that detects Echinococcus granulosus
protoscoleces using eosin exclusion. This method improves
upon existing bottom-up computational saliency models by
introducing a visual attention mechanism. Using this
method, areas with suspected living tapeworm parasites
are first identified and outlined. Next, using sample images
of the suspected parasites, the SIFT algorithm extracts
common features from the images, and the k-means
algorithm is used to cluster them. Finally, SVM learning
is applied, and the previously identified suspicious areas
are subsequently classified.

Most notably, this proposed parasite recognition
method limits analysis to suspected living parasite areas
determined through visual saliency, which in turn reduces
feature extraction time using the SIFT algorithm. Use of
the k-means clustering algorithm to convert the high-
dimensional feature descriptor of the SIFT eigenvector

Fig. 5. (a) Microscopic image of Echinococcus granulosus proto-
scoleces, (b) the corresponding visual saliency map produced
with the modified Itti model, and (c) the SVM classification
results applied to the original image.

Fig. 6. Egg recognition results using the proposed method.

Table 2. Comparative Parasite Recognition Rates Using
the Proposed Method for Three Different Eosin Exclusion
Test Images Containing Living Parasites

Test
Image

Number of
Actual Living

Parasites

Number of Correctly
Identified Living

Parasites

Egg
Recognition

Rate

a 22 21 95.4%

b 30 27 90.0%

c 50 46 92.0%

Table 1. Comparative Parasite Recognition Rates for
Methods Using the Conventional Itti model and the
proposed modified Itti model

Visual
Saliency
Model

Number
of Actual
Living

Parasites

Number of
Correctly
Identified
Living

Parasites

Parasite
Recognition

Rate

Conventional
Itti model

22 18 81.8%

Modified Itti
model

22 21 95.4%
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(which is too complex and time-consuming for analysis)
improves the computing efficiency of the target search
and increases the stability of the features in the analysis
region.
The efficacy of this proposed method was validated with

experimental methods. Experimental results indicated
that the proposed method, based on visual saliency and
scale-invariant, features, offers a higher level of accuracy
(sufficiently high to meet hospital clinical test require-
ments) when detecting Echinococcus granulosus protosco-
leces, which in turn could improve live detection of
echinococcosis and ultimately public health. In addition,
the proposed method offers a higher level of computational
efficiency, reducing both the workload and error potential
attributable to manual counts performed by human
observers. Sometimes parasites can produce sterile cysts
(without protoscoleces), which is a limitation of this
method. In future experiments, we will take this into ac-
count and carry out further research.
Experiments are in progress to optimize the algorithm

and improve the recognition efficiency.
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