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We propose the modified Kalman filter (MKF) using the received signal for observation and constructing an
inverse process of the conventional Kalman filter (CKF) for polarization de-multiplexing in coherent optical
(CO) orthogonal frequency-division multiplexing (OFDM) transmissions. The MKF can avoid the convergence
error problem in CKF without matrix inverse operation and has a faster converging speed and a much larger
tolerance to the process and measurement noise covariance, about two orders of magnitude more than those of
CKF. We experimentally demonstrate the 12 Gbaud OFDM signal transmission over 480 km standard single-
mode fiber. The performance of MKF and CKF outperforms pilot-aided polarization de-multiplexing with better
accuracy and nonlinearity tolerance.
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Polarization-division multiplexing (PDM) is a straight-
forward way to use the two orthogonal polarizations of
a lightwave to double the spectrum efficiency of coherent
optical (CO) systems[1]. Thanks to digital signal process-
ing (DSP), polarization de-multiplexing and channel
equalization can be implemented in the digital domain
at the receiver. Several methods have been proposed
for polarization de-multiplexing, such as the constant
mode algorithm (CMA)[2], its variant of multiple modulus
algorithm (MMA)[3], Stokes space[4], and Kalman filter-
ing. However, CMA and MMA both suffer from the
singularity problem, i.e., the output signals cannot
converge or they converge to the same polarization tribu-
tary[5]. Due to the fast convergence speed and lower
computational complexity, Kalman filtering has been
proposed for polarization de-multiplexing[6]. The Kalman
filter is an optimum adaptive filter and has already been
applied successfully in other fields, like engineering
control[7–9]. Moreover, it is a well-known recursive algo-
rithm for signal estimation and tracking in time-varying
systems[10]. Therefore, it has also been used for frequency
offset (FO) estimation[11], phase noise (PN) compensa-
tion, and amplitude noise estimation[12]. However, there
are also the convergence error problems in the conven-
tional Kalman filter (CKF), which cannot converge
or even converge to the wrong state in polarization
de-multiplexing. Moreover, since Kalman filtering is
system-dependent, the initialization of the process
and measurement noise covariance Q and R is challeng-
ing, which needs much more time to adjust for conver-
gence and affects the performance of Kalman filtering

significantly. In general, it is difficult to have a common
method to decide the optimum values of Q and R in dif-
ferent systems; then, it is desirable to increase the toler-
ance for process and measurement noise covariance of
Kalman filtering[1].

In this Letter, we propose the modified Kalman
filter (MKF) to use the received signal as the observation
vector and construct the inverse process of the CKF for
polarization de-multiplexing[13]. Since there is no matrix
inversion in the estimation of the Jones matrix for the
proposed MKF, it can avoid the convergence error prob-
lem in CKF and has a faster converging speed and a much
larger tolerance than CKF to the process and measure-
ment noise covariance. We first carry out quadrature
amplitude modulation (16-QAM) transmissions in a sim-
ulation. We find that the CKF also has convergence error
problems. On the other hand, the MKF can work well
and converges with only 70 training symbols. Secondly,
we also conduct numerical simulations and experiments
in a CO orthogonal frequency-division multiplexing
(OFDM) transmission system to compare the tolerance
of MKF and CKF to the process and measurement noise
covariance Q and R. We optimize the tuning parameters
Q and R, i.e., the covariance matrix of the process and
measurement noise, to obtain the optimized perfor-
mance. The simulation results show good converging per-
formance and a faster converging speed than both the
CKF and the conventional pilot-aided polarization de-
multiplexing[14]. The experiment results also verify that
both the MKF and CKF have similar performance, which
is superior to the conventional pilot-aided polarization
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de-multiplexing at different launch powers after 160 and
480 km transmission.
There are various impairments in the optical transmis-

sion systems, such as chromatic dispersion (CD), FO, and
PN[1]. Instead of the CMA algorithm or other adaptive
filter algorithms, which calculate the tap coefficients of
a digital finite impulse response filter, the Kalman filters
can use a mathematical model with the transmission
impairments to mitigate their effects[15]. They provide
accurate estimation to the distortions by minimizing
the variance[16]. Since we focus on the effect of MKF for
polarization de-multiplexing, we employ a simplified trans-
mission model of optical fiber transmission by assuming
that the major channel impairments, such as CD, FO,
and PN, have already been compensated perfectly after
polarization-diversified coherent detection. Therefore,
with the Jones matrix J , the recovered signals Zc and
received signals Zo can be simplified as

ZcðkÞ ¼ J−1ðkÞ·
�
rxðkÞ
ryðkÞ

�
þ nðkÞ; (1)

ZoðkÞ ¼
�
rxðkÞ
ryðkÞ

�
¼ JðkÞ·

�
txðkÞ
tyðkÞ

�
þmðkÞ; (2)

JðkÞ ¼
�
aðkÞ bðkÞ
cðkÞ dðkÞ

�
; (3)

where k denotes the time index. Furthermore, rx , ry,
tx , and ty are the received signals and transmitted
signals in x and y polarizations, respectively. We need
to estimate the polarization state parameters ½a; b; c; d�
of the Jones matrix J , which determines the polarization
rotation and the polarization state. Both n and m
are the additive white Gaussian noise (AWGN) terms,
mainly from amplified spontaneous emission (ASE)
from erbium-doped fiber amplifiers (EDFAs) in both
polarizations[11].
We employ the received signals Zo as the observation

vector in the MKF and construct the inverse process of
CKF as Eq. (2), which is different from the CKF that uses
the recovered signals Zc in Eq. (1) as the observation vec-
tor to estimate the Jones matrix. Therefore, the MKF can
estimate the Jones matrix, avoiding the convergence error
problem in CKF because there is no inversion of the Jones
matrix in the polarization tracking process with training
sequences. Our target is to obtain an optimal estimation of
the polarization state parameters ½a; b; c; d�. Moreover, we
utilize H ¼ ½h11; h12; h21; h22� as the state vector in the
modified Kalman filtering, which is the estimation of
the Jones matrix J . The state and measurement equations
of MKF can be expressed as Eqs. (4) and (5), respectively:

HðkÞ ¼ H ðk − 1Þ þ wðkÞ; (4)

ZoðkÞ ¼
�
rxðkÞ
ryðkÞ

�
¼ JðkÞ·

�
txðkÞ
tyðkÞ

�
þ vðkÞ; (5)

where w and v represent the process and measurement
noises, both of which are AWGN. Then, we can update
prediction vector Hp and the prior error covariance Pp

by the time update as

HpðkÞ ¼ Hcðk − 1Þ; (6)

PpðkÞ ¼ Pcðk − 1Þ þQ; (7)

where Hc, Pc, and Q are the correction vector, the pos-
terior error covariance, and the process noise covariance.
The state update of the MKF can be represented as

MðkÞ ¼
�
Z in;xðkÞ Z in;yðkÞ 0 0

0 0 Z in;xðkÞ Z in;yðkÞ
�
; (8)

ΔeðkÞ ¼ ZoðkÞ−MðkÞHpðkÞ; (9)

K ¼ PpðkÞMðkÞT ½MðkÞPpðkÞMðkÞT þ R�−1; (10)

HcðkÞ ¼ HpðkÞ þKΔeðkÞ; (11)

PcðkÞ ¼ PpðkÞ−KMðkÞPcðkÞ; (12)

where M , R, Z in, Δe, and K are the measurement matrix,
the measurement noise covariance, the input of the
Kalman filter, the innovation vector, and the Kalman
gain, respectively.

Figure 1 shows the block diagram of the proposed MKF
scheme.We first switch the input of the Kalman filter Z in to
the training sequences to construct the measurement matrix
as Eq. (8) and realize pre-convergence as the solid frame-
work shown in Fig. 1. After the acquisition of the Jones
matrix for MKF to pre-converge using the training sequen-
ces, even if the polarization is time-varying, we can track it
by switching Z in to the decision module, as the dotted
framework for tracking shown in Fig. 1. It is different from
the CKF that uses the received signals as the input of the
Kalman filtering. The Zout is the output of the Kalman filter
and also the signals after polarization de-multiplexing.

We first carry out a simulation of a dual-polarization
16-QAM system on MATLAB to verify that the proposed
MKF scheme is effective for polarization de-multiplexing.

Fig. 1. Block diagram of the proposed polarization de-multiplexing
with the MKF scheme.
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We intentionally set a matrix that is expressed as a vector
in Kalman filtering to verify the MKF, avoiding the
convergence error problem in CKF. Figure 2 depicts
the converging performance of CKF and MKF under the
optimized tuning parameters, respectively. While CKF
cannot converge and even converges to the wrong state,
the MKF can converge rapidly with only 70 symbols,
which verifies the feasibility of the MKF that can be used
for polarization de-multiplexing while avoiding the con-
vergence error problem in CKF. We then use a unitary
matrixH to compare the converging speed. Figure 3 shows
the comparison of mean squared error (MSE) between the
CKF and the MKF. The converging speed for the MKF is
apparently faster than that of the CKF. Due to the inno-
vation vector, Δe represents the convergence criterion for
the Kalman filter. Since we employ the received signals as
the observation vector to obtain the innovation vector, a
more explicit target for convergence is supplied and results
in a faster converging speed.

We finally conduct an experiment to compare the per-
formance with the CKF, the MKF, and pilot-aided polari-
zation de-multiplexing in a CO-OFDM transmission.
Figure 4 is the experimental setup. At the transmitter
side, we transmit 221 OFDM symbols, in which 20 are
training symbols, and one is a null symbol. The OFDM
symbols are transferred to the time domain by an inverse
fast Fourier transform (IFFT) of the size 256, followed by
1/32 cyclic prefix (CP) insertion. The number of effective
subcarriers is 212. Then, the OFDM signal is generated by
the arbitrary waveform generator (AWG) operated at
12 GS/s. The polarization multiplexed signal is generated
by a polarization emulator that consists of a polarization
beam splitter and combiner and a delay line at a length of
one OFDM symbol. The transmission spans N are chosen
as 2 or 6. At the receiver side, after a polarization-
diversified coherent detection, the signals are digitized
by a digital phosphor oscilloscope (DPO) operating at
50 GS/s. Then, the received electrical signal is processed
off-line to compensate for the impairments, such as CD
and FO. After that, the MKF, CKF, and pilot-aided
polarization de-multiplexing are used for polarization
de-multiplexing before phase compensation, respectively.

We first discuss the tolerance to the initial process
and measurement noise covariance parameters Q and R
for theMKF and CKF. The process andmeasurement noise
covariance parameters Q, R can be expressed as Q ¼ qI 4
andR ¼ rI 2. q and r are two constants, and hence, we need
to optimize for both the MKF and CKF. I k represents the
unit matrix with the kth order. The MKF and CKF are
tested under different launch powers and transmission dis-
tances. Figure 5 shows the bit error rates (BERs) versus q
and r for MKF and CKF at different launch powers and
transmission distances with colored contour maps. The tol-
erance to noise covariance Q and R of the MKF is about
two orders of magnitude larger than that of the CKF, when
the transmission distance is 160 km, and the launch power
is −3 and 1 dBm. We change the transmission distance to
480 km and compare the noise covariance tolerance
for MKF and CKF in Figs. 5(e) and 5(f). Similar to that

Fig. 2. Jones matrix estimation in simulation: (a) CKF;
(b) MKF; dotted line, estimated H .

Fig. 3. Converging performance of the MKF and CKF.

Fig. 4. Experimental setup of a polarization multiplexed
CO-OFDM transmission. PB, polarization beam splitter;
PBC, polarization beam combiner; SSMF, standard single-mode
fiber; CD, chromatic dispersion; CFO, carrier frequency offset.
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in Figs. 5(a)–5(d), the MKF performs better than the CKF.
In short, we find that the process and measurement noise
tolerance of the MKF is better than that of the CKF. It is
because the MKF has a faster converging speed than the
CKF under the same parameters Q and R.
Figure 6 illustrates the BERs versus launch power after

160 and 480 km transmission for the CO-OFDM system,
respectively. The tuning parameters Q and R for both
Kalman filters have been optimized according to the results
in Fig. 5. Since the Kalman gain, expressed as Eq. (9), is
asked to be enough large for the Kalman filter to converge
and track stably, q and r have to be limited in an appro-
priate range. Here, we use the optimized Q and R with the
q, r in an appropriate range, as shown in Fig. 5 for MKF
and CKF, which makes bothMKF and CKF converge well.
Therefore, the MKF has similar performance to the CKF
besides a faster converging speed. Both of them perform
better than the conventional pilot-aided polarization de-
multiplexing at all launch powers at different transmission
distances, which shows that the two Kalman filter schemes
both have better accuracy and nonlinearity tolerance in ad-
dition to the fast converging feature.
Thanks to the flexibility of the Kalman filter, the pro-

posed modified Kalman scheme can also be applied to

other modulation formats, e.g., quadrature phase-shift
keying (QPSK) and M-QAM, where we do not need to
change any hardware or framework except for the modu-
lation format.

In this Letter, we have proposed the MKF that uses the
received signal as the observation vector for the measure-
ment equation and constructs an inverse process of the
CKF for polarization de-multiplexing in CO-OFDM
transmissions. The MKF can avoid the convergence error
problem in the CKF for polarization de-multiplexing,
which will disable the polarization de-multiplexing or
deteriorate the performance. Furthermore, we have dem-
onstrated that the MKF has a faster converging speed and
a much larger tolerance to noise covariance Q and R,
about two orders of magnitude larger compared with
CKF by dual-polarization 16-QAM simulations and
12 Gbaud OFDM experiments. Since we have used the
received signals as the observation vector in MKF, a more
explicit target for convergence is given, resulting in a
faster converging speed than CKF with only 70 training
symbols used for convergence. The performances of
MKF and CKF are similar after we used the optimized
Q and R in the same circumstance of the process and
measurement noise, and they both outperform pilot-aided
polarization de-multiplexing.

This work was supported by the National Natural Sci-
ence Foundation of China (NSFC) (Nos. 61420106011,
61871408, and 61871082).
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