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Dispersed fringe sensors are a promising approach for sensing the large-scale physical step between adjacent seg-
ments with acceptable accuracy. However, the nature of dispersion in a dispersed fringe sensor leads to the ideal
dispersed fringe pattern becoming vulnerable to noise, particularly at low light levels. A reliable merit-function-
based algorithm with an active actuation is introduced here. The feasibility of our algorithm is numerically
demonstrated, and Monte Carlo experiments for different signal-to-noise ratios are conducted to assess its
robustness. The results show that the method is valid even when the signal-to-noise ratio is as low as 1.
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It has been a trend that a segmented mirror is employed to
construct extremely large telescopes. Up to this date, sev-
eral large segmented telescopes have been completed, such
as the Keck I/II[1], Giant Magellan Telescope (GMT)[2],
South African Large Telescope (SALT)[3], Hobby-Eberly
Telescope (HET)[4], and Large Sky Area Multi-Object
Fiber Spectroscopic Telescope (LAMOST)[5]; and several
programs are being planned, such as the Thirty Meter
Telescope (TMT)[6], European Extremely Large Telescope
(E-ELT)[7], and Advanced Technology Large-Aperture
Space Telescope (ATLAST)[8]. For the purpose of making
a segmentedmirror act as an equivalent monolithic mirror,
the rigid misalignment errors in the segmented mirror
must be corrected within the tolerance limit, especially
the piston error; if not, the image quality will not be
better than that of a single segment[9].
Over the past decades, many effective methods have

been proposed and demonstrated in indoor and on-sky
experiments. The broadband/narrow-band algorithm[10,11],
APE experiment[12], dispersed fringe sensing (DFS)
method[13,14], and the phase diversity (PD) or phase
retrieval (PR) algorithm[15,16] all achieved great success
in co-phasing the segments. However, in terms of capture
range, the DFS method shows great superiority over other
schemes, which makes it applicable for the commission of
the James Webb Space Telescope (JWST)[17], a spaced-
based, deployable telescope. The DFS shares the same
geometry as that of broadband/narrow-band algorithms,
other than the introduction of a dispersion element. The
capture range could be flexibly adjusted by substituting
a dispersion element with a different dispersion power.
All of these advantages make DFS the promising approach
for large-scale piston sensing.

Due to the inherent feature of spatially dispersing the
broadband light over a broad range, with limited photons
passing through the sub-aperture, the photon events in
each pixel would be less and less, which makes DFS
extremely vulnerable to noise contamination. The informa-
tion available would be lost in the noisy background, which
is more serious for low light level cases. Traditional algo-
rithms for extraction of piston error from a dispersed fringe
pattern (DFP), such as the least-squared fitting (LSF)
method[18], frequency peak location (FPL) method[19], and
main peak position (MPP) method[20] would be invalid for
a strongly noisy DFP. Despite the fact that the dispersed-
fringe-accumulation-based left-subtract-right (DFA-LSR)
method proposed by Li et al. is suited for noisy DFP[21],
its capture range is limited to within a half of the minimum
wavelength used. In this Letter, a merit-function-based
active scanning algorithm is introduced to overcome the
destructive influence of strong noise, and at the same time
preserve the ability of large-scale sensing.

A geometry of DFS is shown in Fig. 1. For simplicity,
we use a selective aperture with a rectangular hole for
sampling the intersegment part of the segmented mirror.

When DFS is incident with the broadband light, with
central wavelength λ0, bandwidth Δλ, and spectral weight
SðλÞ, the intensity distribution in the image plane result-
ing from a dispersion element with dispersion coefficient
C , which stands for the change of wavelength per spatial
separation, is expressed as

hðuÞ ¼
Z

λ0þΔλ∕2

λ0−Δλ∕2
SðλÞhm

�
u − uðλÞ; v; λ�dλ; (1)

where u ¼ ðu; vÞ is the position vector in the image plane
and hmðu; λÞ is the far-field intensity for monochromatic
light without dispersion, and given by
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where X , Y are the lengths of selective aperture along the
dispersion and interference direction, respectively,G is the
gap between the adjacent segments, f is the focal length,
and p is the piston error. In addition, uðλÞ in Eq. (1) is the
dispersion displacement for wavelength λ, which could be
determined by

λðuÞ ¼ λ0 þ
dλ
du

u ¼ λ0 þ Cu. (3)

A distinct feature of DFS is that the limited photons pass-
ing through the system are spread across the focal plane
because of the dispersion effect. In each ideal DFP corre-
sponding to a given piston, the peak value is extremely
low. For the purpose of analysis, a quantity is defined as

R ¼ max
�
hðu; vÞ�P

u;vhðu; vÞ
: (4)

In order to obtain a further understanding of the unfav-
orable effect of dispersion, the quantity R for the case
without dispersion, i.e., C ¼ ∞, is chosen as a comparison.
The parameters used in analysis are listed in Table 1.
What needs to be emphasized is that the parameters
shown in Table 1 are throughout this Letter, and the
results are shown in Fig. 2.
Obviously, the quantity R is evidently larger when the

piston error is nearly eliminated. The ratio for a case
without dispersion is more than an order of magnitude
larger than that for a case with dispersion. This fact that
each pixel in DFP is with extremely low effective photon

events makes DFS vulnerable to random noise is a direct
motivation to develop a robust algorithm for sensing
large-scale piston error from strongly noisy DFP with
enough accuracy.

Li et al. proposed the DFA-LSR algorithm to cope with
the fine co-phasing problem in strong noise. However, it
depends on the reliable left and right peak values after
accumulation along the dispersion direction. When the
absolute value of piston error is larger than one quarter
of the minimum wavelength, the characteristic peaks
would disappear, thus, this algorithm becomes invalid.
In order to make up for this technical vacancy, a merit-
function-based active scanning algorithm is introduced.
It makes full use of the actuators attached to the back
of the segment to actively actuate one of the segments
in question. Figure 3 shows the flow chart of our algo-
rithm. The process of our algorithm can be divided into
two parts. The first step is to collect all of the DFPs
corresponding to each actuated position within the stroke
of actuators, and thus, a data cube of DFPs for different
pistons could be readily obtained. In the second step, the
merit function value is evaluated for each DFP. The ac-
tuation displacement corresponding to the maximum of
the merit function values is equal to the negative of the
actual piston error and could be directly applied to correct
the piston misalignment.

There are many merit function definitions available[22,23],
and we employ the sum of the n-th power of the intensity
as our merit function for its computational simplicity, i.e.,

Jn ¼
X
u;v

hnðu; vÞ; (5)

where Jn is obtained by summation over the whole DFP.
It has been proved that for the monochromatic case, Jn

reaches its maximum only when the aberration function
is reduced to no more than the image translation[22]. For
the problem described here, the monochromatic Jn would
be maximum when the piston error is completely
eliminated. As for DFP, it is a desperately tough task

Fig. 1. Geometry of DFS.

Table 1. Parameters Used for Analysis of J as a Function
of Piston Error

X
(mm)

Y
(mm)

G
(mm)

f
(mm)

C
(nm/mm)

λ0
(nm)

Δλ
(nm)

2 7 3 100 100/1.236 750 100

Fig. 2. Relation between R and the piston error for cases with
and without dispersion.
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to theoretically prove this similar conclusion. So, a
numerical analysis is conducted to testify that, alterna-
tively. The result of Jn as a function of piston error is
shown in Fig. 4. Here, two spectral weight functions
are used.
It could be seen that the maximum is reached when the

piston error is zero, not only for a uniform spectrum, but
also for a random spectrum. It is indicated that the merit
function defined as Eq. (5) could be used as the indicator
whether or not the in-phase state is achieved. The larger
the power exponent is, the smaller the minimum of rela-
tive merit function is. As a result, the dynamic range of the
relative merit function is satisfactorily broadened by
adopting the larger power exponent.
As an example for describing the algorithm developed

here, we assume here that the segments are actively actu-
ated by three actuators in the piston, each of which is
within a range of 100 μm, and a resolution of 0.5 nm,
and the segment could deviate from the ideal position
in the þ∕− direction with a maximum displacement of
50 μm. In addition, a piston error of 42 μm exists in the
two-segment segmented mirror. The signal for this
disturbed status is plotted in Fig. 5.
The displacement corresponding to the maximum of the

normalized merit function is eventually equal to the neg-
ative of the ideal piston error. The approach proposed in
this Letter is simple to implement, and in general, the
piston error could be effectively and accurately sensed
provided that the value of error is within the range of
the actuator; thus, it is free of the special requirements
in the traditional methods, such as the optimal fringe
extraction line[24], a clear main peak profile in the spatial
domain[20,21] or the spatial frequency domain[19]. In the fol-
lowing, we will give an analysis of its robustness to noise.
The signal-to-noise ratio (SNR) is defined as[25]

Fig. 3. Flow chart of the algorithm introduced in this Letter.

Fig. 4 Jn as a function of piston error, for (a) a uniform spec-
trum, (b) the random spectrum, (c) for the random spectrum
shown in (b).

Fig. 5. Signal for a piston error of 42 μm.When the displacement
of the actuator is −42 μm, the normalized merit function reaches
its maximum.
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SNR ¼ P
σn

; (6)

where P is the peak value of the DFP without noise and σn
is the standard deviation value of the noise. Two realiza-
tions of noisy DFP for a piston error of 15 μm for different
SNRs are shown in Fig. 6. It is obvious that the DFP
would suffer from the destructive effect from noise, which
is especially severe for strong noise commensurate with an
ideal intensity of DFP.
Essentially, the problem of how the noises with different

levels affect the piston sensing is equivalent to whether or
not the value of the merit function evaluated from noisy
DFP reaches its maximum when the piston error is zero.
An instant realization of noisy DFP for an SNR of 1 is
simulated, and immediately the resulting merit function
is calculated for different power exponents and shown
in Fig. 7.
The conclusion could be drawn that the larger the

power exponent is, the larger the dynamic range of merit
function for noisy DFP is; as a consequence, the larger
the SNR of the relative merit function is, and the more
accurate the piston sensing is.
We have also analyzed the piston corresponding to the

maximum of the merit function for a series of SNRs for
different power exponents and for either a uniform
spectral profile or a random spectral profile shown in
Fig. 4(b). The results are shown in Fig. 8.

Here, for each given power exponent and SNR, five real-
izations for noisy DFP are generated. It is clear that for
larger SNR the piston value corresponding to the maxi-
mum of the merit function is closer to the zero piston; that
is to say, the sensing error is smaller. For a larger power
exponent, the deviation of the piston value corresponding
to the maximum of the merit function from the zero piston
is larger. Even for an SNR of 0.5, the deviation is up to
−70 μm when the power exponent is 2, which is unaccept-
able. The analysis here suggests that when extracting the
piston error from the strongly contaminated DFP, the
best choice is to use the large power exponent in order
to increase the possibility of accurately sensing the piston
step. The conclusion is applicable for the uniform and
random spectral profiles.

In conclusion, a substantial amount of the Monte
Carlo experiments proximate to the realism demonstrate
that the piston misalignment of the segmented mirror
could be sensed via the dispersed fringe sensor with a
merit-function-based active scanning algorithm, especially
for cases at low light level. A power-based merit function is
employed, and via the active scanning in the piston,
the original piston error could be effectively obtained

Fig. 6. Two realizations of noisy DFP for different SNRs:
(a) SNR is 1, (b) SNR is 5.

Fig. 7. Relative merit function versus piston error for an instant
realization of DFP for an SNR of 1.

Fig. 8. Piston corresponding to the maximum of merit function
versus different SNRs: (a) for uniform spectral profile, (b) for
random spectral profile as in Fig. 4(b).
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according to the maximum of the merit function. In prac-
tice, the larger power exponent is used to resist the neg-
ative effect of strong noise. This innovative approach
overcomes the relatively demanding requirements in tradi-
tional DFS extraction methods and broadens the applica-
tion field to strong noise and weak-light-level cases. The
combination of methods proposed here and DFA-LSR
could finely co-phase the segmented mirror within the op-
tical tolerance limit reliably. In general, the capture range
is only limited by the available range of actuators in active
optical systems, which makes it feasible in sensing the
large-scale piston error beyond the capture range of a tra-
ditional DFS. A specialized experiential bench is being
built for the scheduled experimental demonstration, and
the experimental results will be reported in a future
publication.
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