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The influence of the fourth-order dispersion coefficient on the behavior of parametric gain and saturation power
of a one-pump fiber optical parametric amplifier over a signal wavelength span in the presence of fiber random
dispersion fluctuations was investigated. The output signal power for the parametric gain calculation was
obtained by numerically solving the three-coupled amplitude equations. Based on the calculations of the para-
metric gain over a variation of the signal wavelength, it is found that the saturation power behavior is dependent
on the behavior of parametric gain. The manipulations of signal wavelength and the fourth-order dispersion
coefficient changed the phase-matching condition, thereby affecting the resulting parametric gain and saturation
power.
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A fiber optical parametric amplifier (FOPA) is a device
that utilizes the nonlinear effect of four-wave mixing
(FWM). FWM is a type of optical third-order Kerr non-
linearity[1]. Besides FOPA, the FWM effect has also been
adopted in other devices such as filters[2], optical genera-
tors[3], and wavelength converters[4]. The use of the FWM
effect in FOPA has made it surpass the abilities of two
major conventional amplifiers, i.e., Raman amplifier (RA)
and erbium-doped fiber amplifier (EDFA). An FOPA is
able to provide adjustable gain spectra and center fre-
quency, as well as a 0 dB noise figure, which cannot be
offered by the RA and EDFA[5].
One of the important parameters of an FOPA is its

parametric gain. Theoretically, the input signal power
of the FOPA plays an important role in determining
the parametric gain. The FOPA with small input signal
power is most likely to have high parametric gain[6]. In con-
trast, a lower parametric gain is usually attained when a
high input signal power is used. The reduction of paramet-
ric gain when the high input signal power is used indicates
that the parametric gain is saturating[7]. The parametric
gain saturates at a different value of input signal power,
and the value is dependent on the signal wavelength of
FOPA[8]. The behavior of the parametric gain in the sat-
uration regime (i.e., high input signal power) has been
reported in various works[8–10]. Nevertheless, only particu-
lar signal wavelengths were selected for the saturation
analysis. In this work, the saturation behavior was ana-
lyzed for a wide range of signal wavelengths. This work
is especially beneficial for applications that require FOPA

to operate in the saturation regime. Among the related
applications are signal regeneration[11,12] and noise suppres-
sion[13]. Therefore, it is useful to know the saturation power
at each signal wavelength in order to fulfill the require-
ment of the application.

The saturation power is determined by the input signal
power at which 3 dB reduction of parametric gain from its
initial value occurs. This means that the performance of
parametric gain contributes to the saturation power
behavior. The performance of FOPA parametric gain,
especially at the signal wavelength far from the pump
wavelength is influenced by the fourth-order dispersion
coefficient, β4 of the optical fiber[10,14,15]. Hence, it is much
more accurate to include β4 while investigating the behav-
ior of saturation power over signal wavelength.

This Letter, thus, presents a numerical simulation of
saturation power on one-pump (1-P) FOPA with the
influence of β4 of highly nonlinear dispersion-shifted fiber
(HNL-DSF). The behavior of parametric gain and satura-
tion power over a signal wavelength span was investigated
for different values of β4. In the simulation work, fiber
random dispersion fluctuations were taken into account,
alongside pump depletion and fiber losses. The random
dispersion fluctuations are vital to be taken into account,
as in practice their existence cannot be avoided.

In a 1-P FOPA, the FWM process, which is based on
a parametric process, is adopted. The parametric process
is a process in which the pump power is transferred to
the signal and idler waves. The idler is a new generated
wave at frequency ωi , and its generation is due to the
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propagation of the pump (at frequency ωp) and signal
(at frequency ωs) throughout the fiber length. Interactions
between the pump, signal, and idler waves are represented
by the three-coupled amplitude equations, such that[16]
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where Ap, As, and Ai are the pump, signal, and idler
amplitudes, respectively; meanwhile, * denotes their com-
plex conjugates. γ and α represent fiber nonlinearity and
losses, correspondingly. The linear phase-mismatch Δβ
along the fiber length z is expressed as

Δβ ¼
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in terms of second-order (β2) and fourth-order (β4)
dispersion coefficients, as well as random dispersion fluc-
tuations δβ. ω0 denotes the zero-dispersion frequency such
as ω0 ¼ 2πc∕λ0, where λ0 is the zero-dispersion wavelength
(ZDW) of the optical fiber.
The random fluctuations are modeled by following

Gaussian distribution, such as δβ ¼ σ × n, where n is a
normal distribution in the range of ½−1; 1�, and σ is the
standard deviation[17]. σ is also known as the fluctuation
amplitude, which is expressed as σ ¼ f γPp0, where f
and Pp0 denote a dimensionless physical constant and in-
put pump power, correspondingly. Along the fiber length
L, the random variation of δβ was assumed as a piecewise
constant with a correlation length Lc, and Lc is the aver-
age length scale over which the fluctuations take place[9].
In simulation work, a fiber will be divided into N seg-
ments, such as N ¼ L∕Lc, and, over each segment, the
fluctuation was fixed. The length of each segment can
be computed by z ¼ −Lc × ln n[9].
In δβ modeling, it can be observed that σ and Lc will

affect the phase-matching condition and, thus, the perfor-
mance of 1-P FOPA. In Refs. [9,10], the effect of σ and Lc

variations on the amplifier performance was investigated.
Generally, it was reported that the effect of high σ and
short Lc of δβ is more severe than the effect of low σ
and long Lc. This was demonstrated by the reduction
of parametric gain when σ is increased and Lc is reduced.

In this Letter, δβ is modeled with σ ¼ 0.5γPp0 and
Lc ¼ 100 m. These values provide the average effect of
dispersion fluctuations on the 1-P FOPA performance.
In this simulation work, a short HNL-DSF, of which
the length was about 500 m, was used to avoid broken
phase-matching, which usually occurs in a long fiber[18].
The nonlinearity and losses of the HNL-DSF are γ ¼
11.5 W−1·km−1 and α ¼ 0.82 dB∕km, respectively. An
example of the δβ pattern when Pp0 ¼ 30 dBm is shown
in Fig. 1. As seen, the number of segment N ¼ 5 for Lc ¼
100 m with fiber length L ¼ 500 m. The σ ¼ 0.5γPp0 rep-
resents the average range of δβ between each segment. The
range of δβ will be increased as the value of σ increases,
hence making the fluctuations more pronounced.

As for parametric gain, the calculation was realized by
numerically solving Eqs. (1)–(3) using the Runge–Kutta–
Fehlberg method, with Aj0 ¼

								
Pj0

p
for j ∈ fp; s; ig as the

input values for the first segment. The Runge–Kutta
method was chosen because it offers stable numerical
results[19]. The outputs of the first segment were then used
as the inputs for the second segment, and again the equa-
tions were solved. The computation was repeated for the
next segment and terminated once the outputs of the last
segment were acquired. For the calculation of parametric
gain G, the output signal power Ps of the last segment
was divided with the input signal power Ps0 such as G ¼
10 logðPs∕Ps0Þ (in dB)[7]. Owing to the stochastic nature of
the dispersion fluctuations, the following computation
process was repeated for a large number of δβ patterns
with similar values of σ and Lc. Eventually, upon complet-
ing calculations for each δβ, the average parametric
gain Ḡ was computed. All computations were conducted
in MATLAB software.

In this simulation work, the investigation of saturation
power at different signal wavelengths λs was simu-
lated with parameters L ¼ 500 m, α ¼ 0.82 dB∕km,
γ ¼ 11.5 W−1·km−1, λ0 ¼ 1556.5 nm, and β2 ¼ −1.97 ×
10−2 ps2∕km. Meanwhile, Pp0 ¼ 30 dBm at wavelength
λp ¼ 1558 nm, and input signal power is within the range

Fig. 1. Random dispersion fluctuations with σ ¼ 0.5γPp0 and
Lc ¼ 100 m.

COL 17(11), 110603(2019) CHINESE OPTICS LETTERS November 2019

110603-2



of Ps0 ¼ −40 to 20 dBm at each signal wavelength λs in
the gain spectrum. The effect of signal wavelength on sat-
uration power was simulated for three different values of
β4, i.e., β4 ¼ 0, 3.03 × 10−5, and 6.23 × 10−5 ps4∕km[10].
The saturation power was determined by reducing the
parametric gain 3 dB from its initial value in the small-
signal regime. As an example, in Fig. 2(a), the parametric
gain for β4 ¼ 6.23 × 10−5 ps4∕km with δβ of σ ¼ 0.5γPp0

and Lc ¼ 100 m at λs ¼ 1590 nm was computed while
varying the signal output power. The obtained saturation
power at λs ¼ 1590 nm, at which the parametric gain was
reduced by 3 dB, is at Ps ¼ −5.61 dBm, indicated by the
vertical dashed line. The saturation power can be further
described by power evolution of the pump, signal, and
idler [see Fig. 2(b)]. The average output power for each
input signal power was obtained based on Eqs. (1)–(3)
over a large number of δβ patterns. As observed, in the
small-signal regime, the output pump power remains con-
stant. However, the output signal power increased propor-
tionally to the input signal power Ps0. This behavior is
caused by the power transfer process from the pump to
the signal. As a result, the parametric gain in this regime
is constant and unsaturated [refer to Fig. 2(a)]. In the
saturation regime, on the other hand, the output pump
power begins to decrease, and the parametric gain starts
to saturate. In this stage, the power is still transferred
from the pump to the signal and idler. However, beyond

the point where the output pump power is minimum, and
output signal power is maximum, the power transfer takes
place in the reverse direction, i.e., from the signal and idler
to the pump.

The behavior of power evolution and thus the resulting
parametric gain is dependent on the position of λs. Besides
that, the parametric gain is also dependent on β4

[14]. In
practice, it is possible to have different fibers with different
β4 but similar β2 at a particular wavelength. This is be-
cause different dispersion profiles associated with different
fibers may possibly meet each other at the specific point
(the particular wavelength). These profiles have different
slopes, and since the slopes are different, β4 is different as
well[20]. Therefore, in order to critically analyze the effect of
β4 on saturation power, the simulations were carried out
on three β4 values, which are β4 ¼ 0 (indicates that β4
is ignored), 3.03 × 10−5, and 6.23 × 10−5 ps4∕km, while
fixing the value of β2. For each β4, the position of λs
was varied.

First, the computation of parametric gain while neglect-
ing β4, i.e., β4 ¼ 0 ps4∕km, was carried out in the small-
signal regime of Ps0 ¼ −40 dBm. The results are revealed
in Fig. 3(a). It is worth noting that since a total gain
spectrum of 1-P FOPA is symmetric with respect to
the pump wavelength, here a half-gain spectrum was plot-
ted. As seen, there are two regions that were marked in

Fig. 2. (a) Saturation curve and (b) average output power
at λs ¼ 1590 nm for β4 ¼ 6.23 × 10−5 ps4∕km with fluctuation
parameters of σ ¼ 0.5γPp0 and Lc ¼ 100 m.

Fig. 3. (a) Half-parametric-gain spectrum for Ps0 ¼ −40 dBm
(small-signal regime) and saturation power and (b) phase-
mismatch at saturation power with a variation of λs for
β4 ¼ 0 ps4∕km.
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Fig. 3(a), i.e., I (1558–1603 nm) and II (1603–1630 nm). In
region I, the parametric gain increases as λs increases. For
example, at λs ¼ 1560 nm, the parametric gain is 14.1 dB,
and it increases to 34.9 dB at λs ¼ 1600 nm. This is due to
the changes of total phase-mismatch in the fiber [refer to
Fig. 3(b)]. Total phase-mismatch is a power dependent
function, given as κ ¼ Δβ þ γð2Pp − Ps − PiÞ[8]. Perfect
phase-matching occurs when κ ¼ 0, which, in this case,
takes place when Δβ¼−γð2Pp−Ps−PiÞ≈−0.023m−1.
As λs increases, Δβ reduces and approaches −0.023 m−1,
which then leads to the increase of parametric gain.
Basically, the parametric gain at the respective λs in
the small-signal regime of Ps0 ¼ −40 dBm will affect the
corresponding saturation power. This is evidenced by
the behavior of saturation power in the same figure,
i.e., Fig. 3(a). It can be seen that the higher parametric
gain results in lower saturation power. In terms of λs,
the gain saturates faster (low saturation power) for longer
λs, at which the parametric gain is higher, if compared
to the shorter λs, at which the parametric gain is lower.
For illustration, the saturation power at λs ¼ 1560 nm
is Psat ¼ 6.8 dBm; meanwhile, at λs ¼ 1600 nm, Psat ¼
−11.6 dBm is obtained. At each λs, the increment of
Ps0 causes the increase of Ps and Pi [see Fig. 2(b)], thus
decreasing the value of nonlinear term γð2Pp − Ps − PiÞ
of κ. The positive κ then starts to reduce and approaches
zero. This means that the efficiency of the amplification
process is improved and so is the parametric gain. The
longer λs does not need higher Ps0 to reduce the positive
κ and make it approach zero, as it already owns a small
value of κ (because of Δβ in the small-signal regime).
The κ thus tends to depart from zero at the lower Ps0,
hence leading to the saturation of parametric gain and
therefore explaining the reason why parametric gain at
longer λs saturates faster than that at the shorter λs.
Now, as for the parametric gain in region II, in contrast

to the behavior in region I, the increase of λs causes the
parametric gain to reduce. For instance, the parametric
gain at λs ¼ 1610 nm is 32.4 dB, but then it reduces to
17.1 dB at λs ¼ 1620 nm. This is because in this region
the reduced Δβ starts to depart from −0.023 m−1, thus
reducing the phase-matching condition. Meanwhile, as
for the saturation power, the behavior is similar to in
region I, i.e., the higher parametric gain results in the
lower saturation power. However, in term of λs, the gain
saturates faster for shorter λs (higher parametric gain)
if compared to the longer λs (lower parametric gain).
For example, at λs ¼ 1610 nm, Psat ¼ −11.3 dBm and
at λs ¼ 1620 nm, Psat ¼ −1.6 dBm. In this region, the κ
value in the small-signal regime at each λs is already neg-
ative, and the reduction of κ when Ps0 is increased causes
the negative κ to reduce much further away from zero. For
this reason, the signal at the longer λs reached a lower out-
put level, since the negative κ at longer λs is smaller and
much further from zero than at the shorter λs. This decel-
erates the power transfer process from the pump to the
signal and idler, hence causing the gain saturation to occur
at the higher Ps0.

Next, the behaviors of parametric gain and saturation
power were investigated in presence of β4, i.e., β4 ¼
3.03 × 10−5 ps4∕km, with variation of λs. First, the para-
metric gains were calculated with Ps0 ¼ −40 dBm in the
presence of dispersion fluctuations, and the results are
shown in Fig. 4(a). The analysis is focused on the variation
of λs in region I (1558–1607 nm), II (1607–1644 nm),
III (1644–1670 nm), and IV (1670–1680 nm). Note that
the total bandwidth is broader than the previous spectrum
in Fig. 3(a), which was without β4. However, the flatness
of the gain spectrum when β4 exists, particularly when
β4 ¼ 3.03 × 10−5 ps4∕km, is poor. In regions I and II,
the behaviors of parametric gain and saturation power
are similar with the behavior in Fig. 3(a). This is because
in these two regions the effect of β4 is not significant, which
is due to the small value of ωp − ωs in Eq. (4). The reduc-
tion of parametric gain and the increase of saturation
power in region II, however, are not continuous. As in
region III, the parametric gain starts to climb back; mean-
while, the saturation power begins to fall back on. This is
because in region III the term of ωp − ωs is considered
large enough to significantly affect β4. The positive value
of β4 begins to counteract the negative value of β2 in
Eq. (4), hence increasing the negative Δβ. Consequently,
negative κ increases and approaches zero again, thus
increasing the parametric gain. Meanwhile, the reason
for saturation power behavior over the increase of λs in

Fig. 4. (a) Half-parametric-gain spectrum for Ps0 ¼ −40 dBm
(small-signal regime) and saturation power and (b) phase-
mismatch at saturation power with a variation of λs for
β4 ¼ 3.03 × 10−5 ps4∕km.
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region III is similar to the behavior in region I, when β4 is
ignored (Fig. 3), except the case that κ approaches zero
from the negative regime. The approach of κ back to zero
after its departure in region II is obviously related to the
changes of Δβ after the value of β4 starts to be significant.
Hence, for this reason, the parametric gain is increased,
and saturation power is decreased. Now, in region IV,
the parametric gain reduces, and, at the same time, the
saturation power is increased over the increment of λs.
Unfortunately, the increase of negative κ in region III will
eventually lead to the positive value of κ, which means it
will depart from zero, cause the parametric gain to reduce
again, and hence increase the saturation power, which is
similar to region II.
Based on the report in Ref. [10], the flatness of the gain

spectrum can be enhanced when a fiber with high β4 was
used as a gain medium of the 1-P FOPA. Therefore, this
time the parametric gain and saturation power were
investigated with β4 ¼ 6.23 × 10−5 ps4∕km, while the
other parameters were fixed as the previous. The results
are shown in Fig. 5(a). Roughly, it can be observed that
the behaviors of parametric gain and saturation power in
regions I (1558–1615 nm) and II (1615–1645 nm) are
similar to the behavior in Fig. 3(a). Although their gain
behaviors are similar, the phase-mismatch in the fiber
with and without β4 is different. This is because the

further increment of ωp − ωs value in Eq. (4) does not
cause the κ to fall to a negative value. This is due to
the increment that caused the β4 value to be significant.
The positive value of β4 starts to counteract the negative
value of β2. Consequently, the previous decreasing Δβ
begins to increase, consequently increasing the κ and caus-
ing it to depart from zero. This then causes the reduction
of parametric gain and the increase of saturation power
with the increasing λs in regime II. The behavior of
phase-mismatch has optimized the performance of para-
metric gain and, thus, enhanced the flatness of the gain
spectrum. Based on the saturation power behavior of
all β4 values, it shows that the saturation powers at a par-
ticular λs are different. For instance, at λs ¼ 1625 nm,
Psat ¼ 8.4, −10, and −9.8 dBm for β4 ¼ 0, 3.03 × 10−5,
and 6.23 × 10−5 ps4∕km, respectively. This clearly proves
that the value of saturation power at a particular λs and,
thus, the saturation power behavior over the entire signal
wavelength span are dependent on the higher-order
dispersion coefficients of the optical fiber.

All in all, the performance of the 1-P FOPA, particu-
larly the parametric gain and saturation power while vary-
ing the λs, was investigated in this work. The behaviors of
respective performance parameters were critically ana-
lyzed on three different values of β4 in the presence of ran-
dom dispersion fluctuations. The Runge–Kutta–Fehlberg
method was used to solve the three-coupled amplitude
equations. Generally, the behaviors of the performance
parameters at each λs are contrary to each other. The
higher parametric gain leads to the lower saturation power
and vice versa. As the phase-matching condition is implic-
itly dependent on λs, the manipulation of λs would affect
the efficiency of the phase-matching condition and, thus,
the 1-P FOPA performance. The efficiency of the phase-
matching condition is not only reliant on λs, but also on β4.
The higher value of β4 optimized the parametric gain
performance while enhancing the flatness of the gain spec-
trum. Since the saturation power is dependent on the
parametric gain, it means that the presence of β4 is vital
in analyzing and tailoring the saturation power at a
particular λs, especially at longer λs.

This work was supported by the Fundamental Research
Grant Scheme (FRGS) vot K095 granted by Ministry of
Education (MOE) Malaysia.
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