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Particle ejection is an important process during laser-induced exit surface damage in fused silica. Huge quan-
tities of ejected particles, large ejection velocity, and long ejection duration make this phenomenon difficult to
be directly observed. An in situ two-frame shadowgraphy system combined with a digital particle recognition
algorithm was employed to capture the transient ejecting images and obtain the particle parameters. The
experimental system is based on the principle of polarization splitting and can capture two images at each
damage event. By combining multiple similar damage events at different time delays, the timeline of ejecting
evolution can be obtained. Particle recognition is achieved by an adaptively regularized kernel-based fuzzy
C-means algorithm based on a grey wolf optimizer. This algorithm overcomes the shortcoming of the adap-
tively regularized kernel-based fuzzy C-means algorithm easily falling into the local optimum and can resist
strong image noises, including diffraction pattern, laser speckle, and motion artifact. This system is able to
capture particles ejected after 600 ns with a time resolution of 6 ns and spatial resolution better than 5 μm
under the particle recognition accuracy of 100%.
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Fused silica, as one of the most common optical ele-
ments, is widely used in high-power laser facilities.
Studying the laser-induced damage of fused silica[1,2] is
helpful to enhance the damage threshold[3,4] and the
power of laser facilities. On the other hand, the laser-
induced damage process has abundant experimental
phenomena and physical mechanisms[5,6], so it is also
helpful to deepen the understanding of the basic process
of the interaction between the high-power laser pulse
and fused silica. Particle ejection[7] is one of the impor-
tant characteristics of exit surface damage in fused
silica. However, it is very difficult to observe the par-
ticles directly because of the characteristics of high
speed, small size, and large quantity. In recent years,
Raman et al. have developed a dual-probe time-resolved
shadowgraphic microscopy system[8,9] to realize real-time
imaging of ejected particles and obtained the kinetic
characteristics of particle ejection[10,11]. Because fused
silica is a brittle element, the number of ejected particles
is very large. If only by manual estimation, it will not
only be time-consuming and laborious, but also lead
to the calculation error caused by the artificial judgment
of particle position and size. Therefore, it is necessary to
develop an automatic dynamic characteristics acquisi-
tion algorithm. Particle recognition is the key step to
realize the automatic acquisition of dynamic character-
istics, that is, to identify the ejected particles in the ex-
perimental image.

In this Letter, based on the idea of pump–probe, the
particle ejection phenomenon in the process of laser-
induced fused silica exit surface damage is observed by
a two-frame shadowgraphy system, and an adaptively
regularized kernel-based fuzzy C-means (ARKFCM) par-
ticle recognition algorithm based on the grey wolf opti-
mizer (GWO) is proposed. The particle recognition
results show that this algorithm outperforms the typical
algorithm in accuracy and stability.

Pump–probe is a method to study transient problems.
Its main idea is to observe the phenomenon of multiple
similar events at different time points and combine them
to get the timeline of event evolution. Pump–probe imag-
ing[12,13] uses short pulses of illuminating light to achieve
high time resolution, reducing the requirements of the
camera and experimental costs. Its time resolution only
depends on the pulse width of the illuminating laser.
It can effectively adjust the time resolution to meet differ-
ent observation needs, but this method cannot achieve
continuous shooting.

The two-frame shadowgraphy system[14] uses two probe
beams whose polarizations are orthogonal to each other to
illuminate. The imaging end receives images with different
polarizations using two cameras, so as to realize imaging
observation at two different time points of the same
damage event. The specific optical path of the two-frame
shadowgraphy system based on electrical delay is shown
in Fig. 1. The pump source uses a Nd-doped yttrium
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aluminum garnet (Nd:YAG) laser (Beamtech, Dawa 300)
with a wavelength of 1064 nm and a full width at half-
maximum of 7.6 ns. The probe source consists of two
Nd:YAG lasers with a wavelength of 532 nm and pulse
widths of 6 ns (BeamTech, Dawa 100) and 8 ns (Beam-
tech, Nimma 600), respectively. The imaging lens is a
2× long-distance microscope objective, and the CCD cam-
era (Daheng Inc., 1628 × 1236 pixels) has a pixel size of
4.4 μm× 4.4 μm. In the pump optical path, the pump
light first passes through a half-wave plate and a polari-
zation beam splitting prism for adjusting the energy of the
pump laser and then is focused by the casing lens to cause
a breakdown on the exit surface of the fused silica target.
In the probe optical path, the probe light is respectively
generated by two independent Nd:YAG lasers, and the
polarization directions of the two probe lights are orthogo-
nal to each other by placing polarizers perpendicular to
each other in the optical path. The polarization splitter
prism is used to combine the two probe beams, and then
the beam is expanded by a telescope optical path to illu-
minate. The probe light passes through the objective, is
separated again by the polarized beam splitting prism
behind the objective, and is imaged on different cameras
separately, thus realizing two images in one damage event.
The digital delay generator DG535 is used to synchronize
the two probe lasers and introduce an electrical delay
of 300 ns. The delay between the probe and the pump
is regulated by DG535, and the accurate delay is recorded
using photodiodes (Thorlabs, DET025) and a high-speed
oscilloscope (1.5 GHz, 20 GS∕s). Clock signals of pump
lamp and Q-switch are provided by the digital delay
generator DG535.
The two-frame shadowgraphy system can capture

two images in one damage event, enabling it to have a
more accurate estimation of the instantaneous velocity
of the particles, thereby better exploring the dynamic
characteristics of the particle ejection phenomenon.
The instantaneous velocity of the ejected particles can
be estimated using the following formula:

Vn;est ¼ ðSn;t0þΔt − Sn;t0Þ∕Δt; (1)

where Sn;t0þΔt and Sn;t0 represent the centroid coordinates
of n particles before and after the delay Δt, respectively.

The particle ejection target area images intercepted in
the experimental images are shown in Fig. 2. The particle
ejection process can be divided into three stages on the
basis of ejected particles characteristics. The images of
the target area are complex and variable throughout
the ejection process, and its complexity and variability
are caused by background noise and particle motion.

Figure 2(a) shows typical characteristics of the first
stage particle ejection. It can be seen from the images that
the particle size is very small, and the distribution is very
dense. In general, the development of particle ejection is
very dramatic. Figure 2(a) shows that a large number
of new particles appear after the time interval between
probe pulses. Figure 2(b) is a typical image pair of the sec-
ond stage. In the second stage, the appearance of a few
large area particles can be observed. Large and small
particles are distributed in the image, and the distribution
of particles tends to disperse. Figure 2(c) is a representa-
tive image pair of the third stage. The number of large
area particles increases, and the particle distribution is
more disperse.

Fig. 1. Two-frame shadowgraphy experimental setup. HWP,
half-wave plate; PD, photodiode; BS, beam splitter; EM,
energy meter; FL, focal lens; PBS, polarized beam splitter;
MO, microscope objective; filter, interference filter; TL, tube
lens; P, polaroid; R, reflector; ND, neutral density attenuator.

Fig. 2. Images of particle ejection target area.
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The dynamic parameters of the ejection can be obtained
by using the position difference of particles between two
images with a time interval of 300 ns. The relative posi-
tions of particles do not change significantly between
the 300 ns delay, so it is feasible to track most particles.
In order to achieve the automatic acquisition of the ejected
particle dynamics characteristic, it is necessary to com-
plete the particle recognition and matching automatically,
that is, to identify the ejected particles in the experimental
image and to determine the corresponding relationship be-
tween particles in two images. The image is full of image
noise caused by diffraction patterns and laser speckles.
Meanwhile, motion artifacts are another major cause of
image noise. Therefore, particle recognition is a challeng-
ing and key step to achieve the automatic acquisition of
the dynamics characteristic.
Image segmentation techniques may enable particle rec-

ognition. Image segmentation mainly includes the edge
segmentation method, threshold segmentation method,
and clustering segmentation method. Typical representa-
tives include Canny edge detection operator[15], Otsu
method[16], K-means clustering algorithm[17], and fuzzy
C-means clustering (FCM) algorithm[18].
FCM achieves unsupervised clustering by an iterative

method to minimize an objective function that depends
on the distance of pixels to clustering centers in the feature
domain. The objective functions and constraints in the
FCM algorithm are

JFCM ¼
Xc
i¼1

Xn
j¼1

umij d
2
ij ; (2)

dij ¼‖xj − ci‖; (3)

Xc
i¼1

uij ¼ 1; uij ∈ ½0; 1�; (4)

where JFCM is the objective function, c is the number of
classifications of the cluster, n is the number of data in
the data set, uij is the membership degree of the sample
j belonging to the cluster i, xj is the position of the data
set j, ci is the central position of the cluster i, and m is a
scalar weighted index to control fuzziness. The disadvant-
age[19] of the FCM algorithm is that it needs to initialize
parameters and is sensitive to initial clustering centers
and image noise.
Obviously, the objective function of the FCM algorithm

does not include any local contextual information, so the
algorithm is sensitive to image noise. To improve the
noise immunity of the FCM algorithm, researchers added
a term that includes the grayscale and spatial information
of the neighborhood to the objective function[20–22]. The
ARKFCM algorithm[22] uses an adaptive parameter φj

to control the effect of the local neighborhood based
on the heterogeneity of local grayscale distribution. The
ultimate weight of each pixel is correlated with the aver-
age grayscale of the local window:

φj ¼
8<
:
2þ ωj x̄j < xj
2− ωj x̄j > xj
0 x̄j ¼ xj

; (5)

where ωj are the weights within the local window.
Moreover, ARKFCM replaces the standard Euclidean
distance with the Gaussian radial basis kernel function. Its
objective function is defined as

JARKFCM ¼
Xc
i¼1

Xn
j¼1

umij
�
1−Kðxj ; ciÞ

�

þ
Xc
i¼1

Xn
j¼1

φjumij ½1−Kðx̄j ; ciÞ�; (6)

in which K is the kernel function, and x̄j is the average,
median, or weighted of the pixels around xj .

ARKFCM overcomes the defect of FCM in its sensitiv-
ity to image noise, but it still has the problems of sensitiv-
ity to initial clustering centers and being easy to fall into
the local optimum. In this work, we combine the GWO[23]

and ARKFCM to propose an ARKFCM algorithm based
on GWO (GWO_ARKFCM) to solve this problem. Its
basic idea is to search the optimal initial clustering center
by using the excellent global optimum searching ability of
the GWO and then make use of the local optimum seeking
ability and noise immunity of ARKFCM, so that the final
clustering results converge to the global optimum and
have good noise resistance.

The GWO is an optimization algorithm inspired by the
social hierarchy and hunting behavior of grey wolves in
the natural world. The social hierarchy of the grey wolf
population is α wolf, β wolf, δ wolf, and ω wolf. The pre-
dation behavior of wolves is divided into three steps:
tracking, encircling, and attacking prey.

The mathematical model of encircling prey is as
follows:

Xðt þ 1Þ ¼ XpðtÞ− A·
��C· XpðtÞ− XðtÞ��; (7)

A ¼ 2a· r1 − a; (8)

X ¼ 2r2; (9)

where t indicates the current iteration, A and C are coef-
ficient vectors, Xp is the position vector of the prey, XðtÞ
indicates the position vector of a grey wolf, a is linearly
decreased from 2 to 0 over the course of iterations, and
r1 and r2 are random vectors in [0, 1].

The mathematical model of hunting can be expressed as
follows:

X1 ¼ Xα − A1·
��C1 · Xα − X

��; (10)

X2 ¼ Xβ − A2·
��C2 · Xβ − X

��; (11)

X3 ¼ Xδ − A3·
��C3 · Xδ − X

��; (12)
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Xðt þ 1Þ ¼ X1ðtÞ þ X2ðtÞ þ X3ðtÞ
3

; (13)

where Xα, Xβ, and Xδ, respectively, represent the position
vector of α, β, and δ in the current population, and X
represents the position vector of the grey wolf.
The fitness function is a criterion for screening the

quality of an individual. The larger the fitness value,
the better the individual. To reduce the computational
complexity, the fitness function of GWO is set as follows:

fitness ¼ 1∕JFCM ¼ 1
��

1þ
Xc
i¼1

Xn
j¼1

umij d
2
ij

�
: (14)

The specific steps of particle recognition include:
(i) using the block-matching and three-dimensional
(3D) filtering algorithm[24] to denoise the image to improve
image quality; (ii) using the GWO to calculate the optimal
initial clustering center Xα; (iii) setting Xα as the initial
clustering center of ARKFCM and using ARKFCM to
conduct particle recognition. The particle recognition
results are shown in Fig. 3, where the white marks are
the identified ejected particles. Figure 3(a) is the original
image. Figure 3(b) is the particle recognition result of
ARKFCM falling into the local optimum, and the result
is very terrible. Figure 3(c) is the particle recognition re-
sult of GWO_ARKFCM. The results show that GWO
can prevent ARKFCM from falling into the local optimum
and greatly improve the particle recognition effect.

Figure 4 is a visual example of the particle recognition
results. Figure 4(a) is the original image; Fig. 4(b) is the
edge detection result of the Canny operator; Figs. 4(c),
4(d), 4(e), and 4(f) are the particle recognition results
of the Otsu method, K-means clustering, FCM, and
GWO_ARKFCM, respectively. It can be seen from Fig. 4
that the image noise in the original image is strong, and
the particle recognition results of each algorithm also have
large differences, which are as follows: (i) the Canny op-
erator is interfered with by image noise, and the edge
detection result is poor, as shown in the red box marked
area in Fig. 4(b); (ii) when the image noise is severe, the
Otsu method identifies the image noise as an ejected par-
ticle, as shown in the blue box marked area in Fig. 4(c);
(iii) particle recognition results of K-means clustering and
FCM are better than those of the Canny operator and
Otsu method, but there are still cases where image noise
is identified as ejected particles, as shown in the green and
purple box marked areas in Figs. 4(d) and 4(e).

A particle recognition test was performed on 100 exper-
imental images, and the results are shown in Fig. 5.
Accuracy is defined as the ratio of the correct to total
number of identified particles. The particle recognition
result shows that the accuracy of GWO_ARKFCM is

Fig. 3. Particle recognition results of 8300 ns delayed particle
ejection target areas.

Fig. 4. Visual example of particle recognition results.

Fig. 5. Comparison of particle recognition effects.
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stable at 100%, indicating that it performs excellently in
accuracy and stability. Figure 6 shows the performance of
GWO_ARKFCM at different delays. The results show
that the method can keep 100% accuracy after a 600 ns
delay. However, the method is time-consuming. In addi-
tion, it discriminates ambiguous particles as the back-
ground, in other words, its high accuracy is at the
expense of the reduced number of detected particles.
A two-frame shadowgraphy system with a time interval

of 300 ns was built to observe laser-induced fused silica
exit surface particle ejection phenomenon. Aiming at
the characteristics of strong noise in experimental images
caused by diffraction pattern, laser speckle, and motion
artifact, an ARKFCM algorithm based on GWO is pro-
posed. The algorithm has good noise immunity and can
achieve 100% accuracy after a 600 ns delay. The algorithm
lays a solid foundation for automatic acquisition of
dynamic characteristics.
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