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Inspired by recent rapid deep learning development, we present a convolutional-neural-network (CNN)-based
algorithm to predict orbital angular momentum (OAM) mode purity in optical fibers using far-field patterns.
It is found that this image-processing-based technique has an excellent ability in predicting the OAM mode
purity, potentially eliminating the need of using bulk optic devices to project light into different polarization
states in traditional methods. The excellent performance of our algorithm can be characterized by a prediction
accuracy of 99.8% and correlation coefficient of 0.99994. Furthermore, the robustness of this technique against
different sizes of testing sets and different phases between different fiber modes is also verified. Hence, such a
technique has a great potential in simplifying the measuring process of OAM purity.
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To increase information capacity of an optical fiber commu-
nication channel, the amplitude, phase, and wavelength of
light are widely used in multiplexing methods[1–3]. Lately,
due to mutual orthogonality and infinite topological
charges of orbital angular momentum (OAM) modes,
OAM has attracted much attention and become a widely
investigated dimension for increasing the information
capacity[4–7]. OAM generation has been realized via a vari-
ety of ways such as grating fibers[8–12], metasurfaces[13,14], and
holograms[15]. Based on this, the data transmission employ-
ing OAM multiplexing has also been realized[4,6,7]. However,
in the detection side, quantitative measurements typically
require complicated or custom apparatuses for OAM
demultiplexing, such as holograms[16], Shack–Hartmann
wavefront sensors[17], or Dove prism arrays[18]. Among them,
it is worth mentioning that in 2012, Ramachandran et al.
presented a technique to measure the OAMmode purity in
two-mode fibers[19]. This method uses the vortex basis set to
analyze the OAM modes and requires a complicated set of
bulk optic devices. In 2017, Ren et al. proposed a scalar
intensity analysis method (SIAM) to determine the purity
of OAM modes in optical fibers[20]. This method uses the
amplitude and phase spectrum obtained from the filtered
electric-field intensity to analyze OAM modes, which has
made great progress and could be implemented without
additional apparatuses in certain experiments and applica-
tions. However, this method requires modulating the polar-
izer in order to project the OAM beams and may be
ineffective when the purity of the OAM mode is low. Be-
sides, there is a growing interest in using mode-sorter-based
OAM mode (de)multiplexing techniques[18,21] to simplify
the measurement process and improve the measurement

accuracy. It should be pointed out that these previous
OAM detection methods typically suffer from unwanted
additional losses, require precise alignment of bulk optic de-
vices, and even fail in the case of low OAM purity.

Recently, deep learning, as an emerging powerful interdis-
ciplinary science field, has attracted tremendous attention.
It has key fundamental differences from other techniques[22],
such as a support vector machine (SVM)[23], k-means[24], and
random forest[25,26], which all require prior knowledge to
design a future extractor in order to transform raw data
into appropriate representations. Deep learning is more
intelligent and requires no substantial domain experiences
and engineering skills. It has an intrinsic ability to complete
feature extraction and self-learning from raw data[22,27].
Owing to this specific advantage, it has been extensively
employed in many applications such as microscopy[28,29],
laser machining[30], and hologram[31]. It is worth noting that
deep learning has also gained considerable popularity in
OAM analysis[32–35], due to the overwhelming advantages
over traditional methods[32–35], including (1) largely simplified
experimental measuring setup, and (2) possibly very high
precision predication results at extremely fast speeds. How-
ever, so far, previous studies have mainly focused on OAM
mode classification rather than quantitative prediction of
OAMmode purity, which can reveal more detailed informa-
tion about the optical transmission channel and is necessary
for characterizing the (de)multiplexing devices.

In this Letter, we propose a convolutional-neural-network
(CNN)-based deep learning algorithm to predict the OAM
purity in optical fibers. Due to the ability of correlating the
far-field diffraction intensity patterns of a superposition of
multiple fiber modes with its modal power distribution,
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the trained CNN is capable of predicting the OAM purity
with very high accuracy. Furthermore, this technique’s gen-
eralization is demonstrated by enlarging the testing set
space, while the robustness against the phase noise is verified
by adding random phase factors to each fiber mode.
To demonstrate the ability of the CNN-based deep learn-

ing algorithm in predicting the OAMmode purity in optical
fibers, we take a few-mode step-index fiber (FMF) as an
example [see Fig. 1(a)]. The radius of the core and cladding
is assumed to be 6 μm and 62.5 μm, respectively, while the
refractive index is set to be 1.449 and 1.444, accordingly.
This fiber can support six modes in total at a 1.55 μm
wavelength, including two degenerate fundamental modes
HEx

11, HEy
11 and four high-order modes TE01, TM01,

HEeven
21 , HEodd

21 . The latter two modes are degenerate,
and they are commonly used to construct OAM modes
by combining them with an equal amplitude and a π∕2
phase difference, i.e., OAM�

�1 ¼ HEeven
21 � iHEodd

21
[10], where

the superscript of OAM�
�1 denotes the spin angular momen-

tum corresponding to the circular polarization states of
optical fiber modes, and the subscript denotes the OAM
corresponding to the helicity of the transverse wave front.
Notice that TE01 and TM01 can in principle also be used to
construct OAM modes, but the resulted OAM modes are
unstable due to the non-degenerate nature of the TE01

andTM01 modes and the resulted phase walk-off[8,36]. Hence,
these unstable OAM modes are of no particular interest
here and are not considered. A simple fiber system, which
utilizes co-propagation coupling to excite OAMmodes, can
generate only an OAMmode with one particular helicity at
a time[8–10] because of the phase-matching condition in the
coupling scheme. In this regard, it is safe to assume that
only the purity of one OAM mode in the output field needs
to be measured or predicted. As shown in Fig. 1(b), we pick
OAMþ

þ1 mode as our object of study and mix it with other
four modes (HEx

11, HE
y
11, TE01, TM01). Thus, the total

electric field in the output of fiber is Eðx;yÞ ¼P
iaieiðx;yÞ, i ¼ 1; 2; : : : ; 5, where ai and eiðx; yÞ are the

normalized mode-field amplitudes and corresponding
mode-field profiles, respectively. They satisfy

P
i jai j2 ¼ 1

and
RR

eiðx; yÞ·ejðx; yÞdxdy ¼ δij
[37]. In the paraxial ap-

proximation, the far-field intensity distribution can be
calculated as I ðx 0;y0Þ ∝ ��Ef f ðx 0; y0Þ

��2, where Ef f ðx 0; y0Þ ∝RR P
iaieiðx; yÞ exp ½−j2πðx 0x þ y0yÞ∕λz�dxdy[38]. In this

work, we numerically generate far-field intensity patterns
using the above far-field diffraction model with a random
sampling approach for the modal amplitudes. These far-
field intensity patterns are pixelated into images with di-
mensions of [108, 108, 1], where 108, 108, and 1 represent
the number of pixels along the vertical direction and hori-
zontal direction and the number of color channels, respec-
tively. In total, 6000 groups of ½a1; a2; a3; a4; a5�, subject toP

i jai j2 ¼ 1, are randomly generated without considering
the phase differences between them, and the purity of a
mode can be herein defined by the percentage of the corre-
sponding modal power; in particular, ja5j2 is regarded as
the OAM mode purity, which is used as labels in training
and testing. Then, 5000 samples are randomly picked as
the training set, and the remaining 1000 samples are used
as the testing set to validate the reliability of the trained
neural network.

CNN is a type of artificial neural network, applicable for
any grid-like data such as videos, skeleton animations, and
images[22,27,39–41]. Compared to other neural networks, CNN
has the characteristic of translation invariance, owing
to its sparse-connected and parameter-shared structure.
CNN generally consists of three stages: convolutional
stage, detection stage, and pooling stage. The convolu-
tional stage uses the convolutional kernels to do the affine
transformation for the input and then outputs feature
maps. The detection stage completes the nonlinear oper-
ation with the rectified linear function, sigmoid function,
or other activation functions. After that, the pooling stage
is used to merge similar features to extract valuable infor-
mation. As mentioned above, CNN has been employed to
realize classifications of OAM modes with different topo-
logical charges[32–35]. In this work, we propose a CNN to
calculate the OAM purity, and the architecture is com-
posed of three convolutional layers, denoted as Conv1,
Conv2, and Conv3, and five fully connected layers, de-
noted as FC1, FC2, FC3, FC4, and FC5, as shown in
Fig. 2. The three convolutional layers use filters with
the stride of [1, 1] and the same padding and with shapes
of [5, 5], [5, 5], and [3, 3], respectively. Besides, all convolu-
tional layers use the rectified linear unit (ReLU)[42] as an
activation function and use the same max pooling (MP)
with a shape of [3, 3] and a stride of [2, 2]. The number
of filters of Conv1, Conv2, and Conv3 is 32, 64, and 128,
separately. After a series of convolutional layers, the out-
put will be fed into a series of fully connected layers. The
number of neurons used for FC1, FC2, FC3, FC4, and
FC5 is 1024, 1024, 512, 128, and 1. The final layer does
not use the activation function, and other fully connected

Fig. 1. (a) Schematic with a superimposed mode at the exit of
the optical fiber and the corresponding far-field pattern that can
be easily recorded by an imaging device (e.g., CCD) and analyzed
by CNN. (b) Mode profiles including the electric intensity pro-
files and phase profiles of the x-direction field component for the
modes of interest in this work.
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layers use the ReLU activation function. The final layer,
with only one node, directly outputs the predicted OAM
purity of a given far-field intensity pattern.
The mean square error between the output of FC5,

namely the predicted OAM mode purities, and labels of
training samples is employed as our loss function J , while
the count percentage P of the testing samples predicted
precisely within a predetermined absolute error (AE)
tolerance is regarded as the criteria for assessment of
the prediction performance[43]. The mathematical defini-
tions of J , AE, and P are as follows:

J ¼ 1
n

Xn
i¼1

ðyip − yil Þ2; (1)

AEðjÞ ¼��yjp − yjl
��; (2)

P ¼ num½AEðjÞ < tol�
m

: (3)

Here, n is the size of the training set. yip and yil denote
the predicted and labeled OAM mode purity of the ith

training sample, respectively. yjp and yjl denote the pre-
dicted and labeled OAM mode purity of the jth testing
sample, respectively. numðÞ is the number of testing sam-
ples that satisfy a certain relationship. m is the size of the
testing set. tol denotes the predetermined AE tolerance. In
an epoch, or a pool of training data, minibatches with a
size of 64 out of 5000 samples in the training set are fed
to the network in turn until the entire set is traversed.
The training set is then shuffled and used in a new epoch.
The process would be repeated 6000 times to make the
network converge. It should be pointed out that it is pref-
erable to use preprocessed data rather than raw data as
input to efficiently train the neural network. The data
preprocessing starts with taking the logarithm of the
raw data in order to reduce the contrast ratio. Then,
the statistical mean and variance of the training set are
calculated and used to scale the data, including the train-
ing and testing data, obtained from the previous step by
subtracting the mean and subsequently dividing them by
variance. After the preprocessing, the data have zero
mean, unit variance, and reasonable contrast ratio. The

preprocessed data are very beneficial in characteristic
learning and in boosting the optimization speed during
the training phase. Notice that the Adam optimization[44]

is used through this work to train our designed neural
network.

The network training was accomplished using the Ten-
sorFlow[45] software library and a Nvidia GeForce GTX
1080Ti GPU. The training time costs approximately
5 h, and the result is illustrated in Fig. 3(a), where the
performance of our neural network converges well, and
the final loss function is below 10−6. The testing set is then
used to test the prediction performance of this well-trained
CNN, which costs approximately 0.25 s. A typical histo-
gram for the actual distribution of AE is shown in
Fig. 3(b), and a zoom-in view plot for the AE larger than
0.01 is illustrated in the inset for clarity. Clearly, the pre-
diction accuracy here can be as high as 99.3% when the
tolerance is set to tol ¼ 0.01, and, if the tolerance is set
to tol ¼ 0.02, the accuracy will be 99.8%, indicating
extraordinary performance of this trained CNN in predict-
ing the OAM mode purity.

In order to further investigate the performance of this
well-trained CNN, the correlation coefficient between the
predicted and labeled values of the OAM mode purity is
calculated as[46,47]

r ¼
PN

i¼1 ðyip − ypÞðyil − ylÞ�����������������������������������������������������������������������PN
i¼1 ðyip − ypÞ2·

PN
i¼1 ðyil − ylÞ2

q : (4)

Here, N is the size of the data set, and yp and yl denote
the mean of the predicted and labeled OAM mode purity
of the data set, respectively. As shown in Fig. 4, the data
points mainly concentrate on the diagonal line, and the
correlation coefficient is 0.99999 for the training set and
0.99994 for the testing set, strongly indicating that the
predicted OAM mode purities agree very well with the
labels. The reason why the CNN architecture has such
a kind of extraordinary performance can be explained
briefly as follows. When the layer goes deeper and deeper,
as shown in Fig. 2, the images become more and more
elusive to human eyes, but the extracted features of the
pictures become progressively distinct to the network
with diverse representations at higher and more abstract
levels[48]. This powerful feature extraction capability,
inherent to the CNN-based prediction model, is the key

Fig. 2. Diagram of our proposed CNN architecture to predict the
OAMmode purity. The CNN architecture consists of eight layers
with three convolutional layers (Conv1, convolutional layer 1;
Pool1, pool layer 1; etc.) and five fully connected layers (FC1,
fully connected layer 1; etc.).

Fig. 3. (a) Training progress of our proposed CNN-based predic-
tion model. (b) Histogram of AE distribution of 1000 testing
samples. Inset: histogram with AE larger than 0.01.
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for this type of application, and assures the model’s gen-
erality and robustness against other degrees of freedom,
as we will discuss below.
As presented above, the deep learning algorithm is good

at extracting features and self-learning, which means a
well-trained neural network could be robust against the
size of the testing set. To demonstrate this, testing sets
containing more samples are utilized to test the generality
of our proposed model. As shown in Fig. 5, the size of the
testing sets ranges from 2000 to 20,000, and the obtained
predication accuracy still maintains more than 99.7%
when the tolerance is set to tol ¼ 0.02. Moreover, it is
noteworthy that the accuracy fluctuates slightly rather
than decreases monotonically as the size of the testing sets
increases, suggesting that the network has received suffi-
cient training. These results strongly illustrate that the
proposed CNN has great generality.
The results discussed above have ignored possible

phase differences of the modes due to the existence of
mode dispersion and various phase perturbations in a
practical optical system. It is thus indispensable to con-
sider its impact on the prediction performance of the
CNN-based model. To study such an effect, 100,000
groups of ½a1; a2; a3; a4; a5� and ½φ1;φ2;φ3;φ4� are first
generated using the random sampling approach, where
φi ði ¼ 1; 2; 3; 4Þ represents the phase difference between
the ith mode and the OAM mode, whose value is in the
range of ½0; 2πÞ. The superposition of the modes is then
given by Eðx; yÞ ¼ P

iaieiðx; yÞ expðjφiÞ with φ5 always
equaling zero. Then, the same CNN architecture as that
shown in Fig. 2 is retrained with 90,000 groups of data as
the training set and another 10,000 groups as the testing
set. It should be pointed out that due to the introduced
phase degree of freedom, a much bigger training set is

necessary in order to prevent overfitting of the neural net-
work[49]. Besides, batch normalization (BN) is used before
the activation function of each layer to exert the regulari-
zation effect and speed up the convergence[50].

The training and testing take approximately 87.7 h and
3.5 s, respectively. The correlation distribution of the
predicted OAM mode purities relative to the labeled ones
is shown in Fig. 6(a). The results presented here show
data with a certain degree of deviation, especially for those
with relatively low OAM purities. However, most of the
10,000 testing data are distributed diagonally. Based
on Eq. (4), the overall correlation coefficients for the
training set and testing set are very satisfactory with val-
ues of 0.99993 and 0.99966, respectively. The prediction
accuracy still reaches 97.7% when the tolerance is set to
tol ¼ 0.02 [see Fig. 6(b)]. Notice that the prediction per-
formance for the data with relatively low OAM purities
can be improved further by introducing more targeted
training data with low OAM purities. Nevertheless, these
findings suggest that our proposed CNN has great ability
to deal with general cases when both the amplitude and
phase degrees of freedom are considered.

Here, it is important to point out that because these
three high-order modes (TE01, TM01, OAMþ

þ1) have the
same annular intensity distribution, the CNN cannot dis-
tinguish OAMþ

þ1 from the other high-order modes if there
is no fundamental mode in the fiber. We are going to study
the interference characteristics of the fundamental modes
with the high-order modes. For the sake of simplicity, we
only show the coherent interference patterns between fun-
damental modes and the high-order modes with the same
intensity in Fig. 7. It is shown that these interference

Fig. 4. Predicted OAMmode purities versus the labeled ones for
both the training set and the testing set.

Fig. 5. Prediction accuracy as a function of the size of the
testing set with the tolerance of 0.02.

Fig. 6. (a) Predicted OAM mode purities versus the labels for
both the training set and the testing set when phase differences
exist between different modes in the optical fiber. (b) Histogram
of AE distribution of 10,000 testing samples. Inset: histogram
with AE larger than 0.02.

Fig. 7. Interferograms of the fundamental modes with the
high-order modes.
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patterns are different from the doughnut intensity profile,
as shown in Fig. 1(b). Besides, it is easy for the human eyes
to distinguish the interferograms of the fundamental
modes with OAMþ

þ1 from the others. Thus, the existence
of the fundamental modes makes OAMþ

þ1 have a unique
interference pattern. Therefore, in theory, it is possible
to extract the information of the OAMþ

þ1 purity based
on the interference pattern in the presence of the funda-
mental modes.
To further illustrate the importance of the fundamental

modes for the high-accuracy result of CNN in analyzing
the OAM purity, we would test the performance of the
trained CNN in the presence and absence of fundamental
modes in the fiber, respectively. Without loss of generality,
we test the second well-trained network in this Letter,
which takes into account the phase differences among dif-
ferent modes. Since the power ratio of each fiber mode is
generated using the random sampling approach, the prob-
ability that the power of fundamental modes is zero is so
small that it can be ignored. The results of Figs. 6(a) and
6(b) demonstrate that the accuracy of the OAM purities
predicted by the CNN is very high in the presence of
fundamental modes. For comparison, 10,000 testing data
are generated based on the same method: Eðx; yÞ ¼P

iaieiðx; yÞ expðjφiÞ, i ¼ 1; 2; : : : ; 5. The difference is
that the magnitudes of the two fundamental modes are
set up to be zero (i.e., a1 ¼ a2 ¼ 0). The correlation dis-
tribution of the predicted OAM mode purities relative
to the labeled ones is shown in Fig. 8, indicating the
bad performance of the CNN in the absence of the
fundamental modes. To sum up, the existence of the fun-
damental models is crucial for the extraordinary perfor-
mance of the CNN in predicting the OAM mode purity.
In order to make the algorithm applicable for all

situations even when no fundamental modes exist in the
under test fiber, we can let the light of an under test
fiber interfere with a coherent reference light, which is
output from an auxiliary fiber containing only the
fundamental modes. Then, the OAMþ

þ1 mode purity could
be deduced according to the following formula:

Sr ¼
ðWa þWbÞSp

Wb
; (5)

where Wa is the power of the auxiliary fundamental
modes,Wb is the power of all modes in the under test fiber,
Sp is the OAMþ

þ1 mode purity of all modes including the

auxiliary fundamental modes, and Sr is the deduced
OAMþ

þ1 mode purity.
In summary, a CNN-based deep learning technique to

predict the OAM mode purity in optical fibers has been
proposed, and its performance has been evaluated using
synthetic data. A specific neural network composed of
three convolutional layers and five fully connected layers
is trained to determine the OAM purity with preprocessed
far-field intensity patterns. The trained CNN has per-
formed excellently in predicting OAM mode purity with
very high accuracy of >99%. Besides, the generality of this
technique is demonstrated by enlarging the testing set
space, while the robustness is verified by adding random
phase factors to the modes of optical fibers. It is worth not-
ing that the architecture of our proposed CNNmay also be
tuned to deal with other types of OAM fibers besides
the FMF, which we used as an example in this work.
Contrast to traditional evaluation methods, which typi-
cally require many bulk optic devices and careful align-
ment, this method could, in principle, dramatically
simplify the process of measuring OAM purity. We believe
that our image-processing-based method holds great
promise for potential applications in OAM-related
spatial-division-multiplexing technology and will be an
important future research direction for other optical com-
munication technologies.

This work was supported by the National Basic
Research Program of China (No. 2015CB659400), the
Natural Science Foundation of Jiangsu Province (No.
BK20150057), and the Fundamental Research Funds
for the Central Universities (No. 021314380100).
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