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We propose a fast and accurate automated algorithm to segment retinal pigment epithelium and internal limit-
ing membrane layers from spectral domain optical coherence tomography (SDOCT) B-scan images. A hybrid
algorithm, which combines intensity thresholding and graph-based algorithms, was used to process and analyze
SDOCT radial scans (120 B scans) images obtained from twenty patients. The relative difference in position of
the layers segmented by the proposed hybrid algorithm and by the clinical expert was 1.49% ± 0.01%. The
processing time of the hybrid algorithm was 9.3 s for six B scans. Dice’s coefficient of the hybrid algorithm
was 96.7% ± 1.6%. The proposed hybrid algorithm for the segmentation of SDOCT images had good agreement
with manual segmentation and reduced processing time.
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Image analysis and segmentation of optic nerve head
(ONH) structures is important for understanding the
mechanism of retinal ganglion cell degeneration in glau-
coma and the development of new diagnostic approaches
and treatments[1]. Spectral domain optical coherence
tomography (SDOCT) is a noninvasive imaging modality,
which generates optical cross-sectional images of the
retina and ONH. Segmentation of the ONH structures,
however, is challenging.
Application of image analysis algorithms into clinical use

is a major challenge due to their overall complexity[2]. An
application of the SDOCT medical image analysis into
clinical use requires several actions: (1) validate the auto-
mated algorithm if the gold standard has not been re-
nowned, (2) select suitable values for image parameters
and algorithms to design the specific optical coherence
tomography (OCT) clinical data, and (3) run the algorithm
with suitable parameters to set specific properties of the
input data[2].
The internal limiting membrane (ILM) (solid green line

in Fig. 1) forms a membrane between the retina and the
vitreous. Retinal thickness is a measure of the distance be-
tween the ILM and retinal pigment epithelium (RPE)[3].
A number of segmentation methods have been suggested
for the automatic segmentation of OCT images related to
its dimension. One-dimensional (1D)-based approaches
find gradient peaks (intensity thresholding algorithm)
through the layer boundary[4–7]. Two-dimensional
(2D)-based methods determine the retinal layers using
2D image segmentation methods, such as level sets and
edge detection[8–11]. Three-dimensional (3D)-based meth-
ods segment the retina layers based on a graph-based
approach[12–14]. The latter is proved to be a robust tech-
nique to segment layers, however, it is computationally
demanding.

Segmentation is a crucial part of OCT image analysis.
Characteristic features of ONH changes in glaucoma
include loss of retinal ganglion cell axons in the region
of prelaminar neural tissue (retina). The retina can
be reconstructed in 3D and embedded to sclera for char-
acterization of ONH biomechanical environment[15].
Girard et al.[16] manually segmented and automatically
reconstructed nine glaucoma patients to establish associ-
ations between retinal sensitivity and ONH strain. There-
fore, development of an automatic ONH retinal layer
segmentation algorithm for SDOCT images is beneficial,
as manual labeling of the layers is time-consuming and a
subjective operation.

The intensity thresholding algorithm requires only a
short processing time. However, it may not be able to lo-
cate the entire retinal layer, particularly in the distorted
image region due to the indistinguishable local maxima/
minima (i.e., break). The graph-based algorithm can seg-
ment the critical regions continuously, however, it requires
a long processing time. This study aims to develop a hy-
brid segmentation algorithm. This will be achieved by

Fig. 1. SDOCT image with retinal pigment epithelium layers
(RPE, solid red line), internal limiting membrane (ILM, solid
green line), and choroid representation.
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increasing the segmentation accuracy and reducing the
segmentation processing time by combining intensity
thresholding and graph-based algorithms. In this Letter,
the accuracy of the proposed hybrid algorithm and its
reproducibility on retina thickness measurement are in-
vestigated, and the results are compared with intensity
thresholding and graph-based algorithms.
The major contribution of this work is twofold.

(1) To present an extended and novel version of the
graph-based algorithm introduced by Chiu et al.[14],
which segments the macula region. This method
can be applied to segment ONH regions based on in-
tensity thresholding and the graph-based approach to
fill the indistinguishable local maxima/minima.

(2) A faster segmentation algorithm is presented that is
able to segment two key layers (ILM and RPE) from
the ONH region. Automatic segmentation in a short
time in such high-resolution datasets reflects an im-
portant contribution.

The ONH region was imaged with the Spectralis OCT
(super-luminescent diode laser center wavelength, 870 nm;
scan speed, 40,000 A scans per second; Heidelberg Engi-
neering, Heidelberg, Germany) in six sections of radial
1024 A scans at 30° angles. Cross-sections of A scans were
positioned at the center of the ONH manually by
the operator, using the eye tracking system to estimate
the clinical disc margin. The image signal-to-noise ratio
was increased with automatically averaging software of
fifteen B scans. The scan quality score of each image
was at least equal to 20. The OCT data sets were collected
from 20 patients recruited for a study investigating lamina
cribrosa and ONH deformation in glaucoma[1,17].
A total of 20 patient SDOCT scans (120 B scans) were

included in this study. The resolution of the images is
1024 × 400. The OCT images were manually segmented
by a clinician using a custom software developed in
MATLAB (R2016 b, MathWorks, Inc.) to serve as a refer-
ence standard for evaluation of the agreement of the pro-
posed hybrid segmentation algorithm (Fig. 1).
First, the ILM and RPE layers were segmented by the

intensity thresholding algorithm. However, the intensity
values varied within columns, and therefore, continuous
detection of points with the thresholding technique was
challenging, especially in diseased eyes. The graph-based
algorithm[14,18] was then used to further process the image
to ensure a continuous segmentation of labeling lines.
The processing of a single image by using only the

graph-based algorithm took a substantial amount of time
to segment the entire layer (421 s, computed with a com-
puter with CPU i5 core 6.60 GHz, 4 GB RAM) due to the

high resolution of the image and high computational
power demand of the algorithm. The processing time of
100 images would take up to several hours; hence, it is
not applicable to daily routine clinical imaging and diag-
nosis. Therefore, the proposed hybrid algorithm aims to
combine the intensity thresholding method with the
graph-based algorithm to decrease computational process-
ing time while maintaining good segmentation accuracy.

Sections A to E describe the proposed hybrid segmen-
tation algorithm. The schematic overview of the proposed
hybrid algorithm is shown in Fig. 2.

A. Preprocessing: To suppress the thermal and
electronic noise, the original SDOCT image indicated as
I ðx; yÞ for ðx; yÞ ∈ ½1;Nc�× ½1;Nr �, where Nc is the num-
ber of columns, and Nr is the number of rows, was first
convolved with a 2D Gaussian smoothing kernel with a
standard deviation of two, which is a common filtering
method that the authors of Refs. [1,19,20] used for B-scan
modes. The image was then convolved with a 10 × 10
median filter by linear low pass filtering averaging across
edges. The image after the combination of these two filter-
ing methods, denoted as Î ðx; yÞ, gave adequate segmenta-
tion results with suppressed local image speckle.

B. Intensity-based algorithm: The principle of finding
the RPE layer was based on the intensity of the backscat-
tered light appearing as the lowest compared with other
layers. It is easily visible and easy to detect, so the pixels
with the lowest intensities in the A scans were assigned as
the boundary of RPE, denoted as LRPE and defined by the
local minima point,

LRPE ¼ fðx;yRPEÞjx ∈ ½1;Nc�;yRPE ¼min½Î ðx;uÞ�g; (1)

where u ∈ ½1;Nr �, and it is related to the intensities of the
de-noised image Î in the corresponding column. To distin-
guish the points caused by noise and blood vessels, a
fourth-order polynomial, f BMðxÞ ¼ ~p4x4 þ ~p3x3 þ ~p2x2þ
~p1x þ ~p0, was used to create a smooth and continuous
curve to eliminate randomly appearing RPE points
(leave it empty) as a result of abrupt transitions of the
delineated boundary. The principle of finding ILM is
based on automatically performing clustering-based image
thresholding[21].

C. Search region limitation: The outlier structures with
analogous characteristics often prevent the algorithm
from accidentally segmenting the outer plexiform layer
(OPL) and inner plexiform layer (IPL) instead of RPE.
It is beneficial to limit the search region to a valid target
region, which helps to exclude any external layers. The
intensity-based algorithm, described in section B, has

Fig. 2. Overview of automatic segmentation of the ILM and RPE layers in SDOCT images.
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limitations when finding the RPE boundary, where empty
spaces need to be fulfilled (Fig. 3). These empty spaces
were used to limit the search region in the form of a
box with five pixels up and five pixels down from the start
(where the gap begins) and end (where the gap ends)
points of the RPE empty areas. Considering the men-
tioned drawbacks, the pixels, which could not be delin-
eated by the intensity-based algorithm or wrongly
delineated, were demarcated afterward by the graph-
based algorithm.
Start and end points were selected and estimated from

the specific layer. This endpoint selection was performed
at two ends of the image. So, if the empty part of the seg-
mentation line is in the beginning or in the end, then an
extra column of nodes is added to both sides of the image.
Minimal weights were assigned arbitrarily to the intensity
values in the vertical direction. Once it was segmented, the
additional columns were removed. As the RPE layer rep-
resents the darkest line, it had a lower weight as a function
of pixel intensity.
D. Graph weights calculation: The minimum weighted

path was found using Dijkstra’s algorithm[22] to find the
associated with edges connecting two endpoints of graphs.
A set of pixels in each image was characterized as an undi-
rected graph of nodes G ¼ ðV ;EÞ, where every pair of the
nodes formed an edge in the image space. The key to
accurately cut graphs is to set up weights on the edges,
connecting nodes according to their similarity. Borders
of the objects to be segmented are given lower weights
to separate it from other features of that object.
Graph weights in the literature[23] represented intensity

variation and geometric distance. Weights were assigned
to individual edges to reflect the possibility that two pixels
belonged to the same line. The SDOCT images used in this
study had a relatively high resolution. As a result of plane
change between adjacent pixels, each node is related to its
eight neighboring pixels and is disassociating with geomet-
ric distance weights. The type of graph was defined to be
undirected to half of the adjacency matrix size:

wab ¼ 2− ðga þ gbÞ þ wmin; (2)

where ga is the vertical image gradient of point a, gb is the
vertical image gradient of point b, wmin is the minimum
weight in the graph, which is equal to 10−5 extra numbers

for system stabilization, and wab is the weight of lines con-
necting vertices a and b. After construction of the adjacent
matrix and graph G with appropriately weighted nodes
with minimum total length, the empty parts, as shown
in Fig. 3, were cut by using Dijkstra’s algorithm[22].
Equation (2) shows weight calculations based on intensity
gradients. It assigns high values to node pairs with low
vertical gradients, where ga and gb are stabilized in the
range of values between 0 and 1. Segmented images with
the hybrid algorithm are shown in Fig. 4, which combines
intensity-based and graph-based algorithms.

E. Dice’s coefficient and segmentation errors: Three
performance metrics, including Dice’s coefficient, auto-
matic and manual relative segmentation difference
(AMRSD), and relative segmentation proportion percent-
age (RSPP), were used to evaluate the accuracy of the
algorithms compared to the manually segmented layer
profile.

The distance between the upper (ILM) and lower
(RPE) boundaries is represented as total retinal distance
(TRT) and used as a reference standard to evaluate the
accuracy of the automatic algorithm[24]. The manually
labeled TRT region between ILM0 and RPE0 represents
the reference standard, denoted as TRT0.

Dice’s coefficient (DiceTRT) is used as a performance
metric to evaluate the variability of the whole profile of
the algorithms with the manually ground truth expert seg-
mented image results, and it was defined as

DiceTRT ¼ 2jTRT∩TRT0j
jTRTj þ jTRT0j : (3)

The high value of DiceTRT indicates a lower difference
with the results from manual segmentation, thus better
performance of the automatic algorithm[25].

AMRSD was defined as the relative segmentation error
of whole profile between RPE0 (manually segmented
layer) and RPE (automatically segmented layer). A
higher value of AMRSD represents a higher relative error:

AMRSDRPE ¼ jRPE0 − RPEj× 100%: (4)

RSPP calculates the number of the ILM0 and RPE0

points relative to automatically segmented RPE and

Fig. 3. Example of the ILM layer (blue line) and RPE layer (red
line) segmentation with the solely intensity-based algorithm.

Fig. 4. Segmentation result of RPE (red line) and ILM (blue
line) of the hybrid algorithm, which is solely a combination of
intensity and graph-based algorithms after filling RPE gaps with
the graph-based approach.
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ILM that can be segmented by the hybrid algorithm, in-
tensity thresholding algorithm, and graph-based algo-
rithm, defined as the ratio of the total number of RPE
(TNRPE) and total number of automatically segmented
ILM (TNILM) pixels to manually segmented values
(TNILM0 and TNRPE0). The higher value of RSPP rep-
resents more data points (pixel) to be segmented by an
automatic algorithm:

RSPPRPE ¼ TNRPE
TNRPE0 × 100%; (5)

RSPPILM ¼ TNILM
TNILM0 × 100%: (6)

One hundred twenty SDOCT B scans of twenty glau-
coma patients were included for analysis. For each
SDOCT B scan, the RPE and ILM layer boundary pixels
were first labeled manually by a clinician.
The performance of automated segmentation obtained

with the three algorithms (intensity thresholding
algorithm, graph-based algorithm, and proposed hybrid
algorithm) was compared with the 120 manually seg-
mented layer profiles. Figure 1 shows the manually seg-
mented layer profile outlined by a clinician, and Fig. 4
shows the automated segmentation results of the hybrid
algorithm from a selected patient.
The average processing time, AMRSD, and Dice’s coef-

ficient are summarized in Table 1. As shown in Table 1,
the intensity thresholding algorithm was 9.27 times faster
than the graph-based algorithm and the hybrid algorithm.
AMRSD for the intensity thresholding algorithm and the
proposed hybrid algorithm fell in a similar range and had a
comparable value, whereas the graph-based algorithm
showed the highest AMRSD.
Dice’s coefficient of the graph-based algorithm was

considerably lower, compared with Dice’s coefficient of
the other two algorithms (>96%) and had a value of
74.1%� 14.8%. There were no detectable differences in
Dice’s coefficients between hybrid and intensity threshold-
ing algorithms.
Table 2 shows the summary of RSPP, which varies

across RPE and ILM layers. RSPP results for RPE and
ILM with the intensity thresholding algorithm were
52.2%� 18.5% and 84.6%� 12.8%, respectively. The in-
tensity algorithm could segment about only half of the
RPE points with more segmented pixels for ILM. Slightly
larger RSPP was noted for the graph-based algorithm

compared with the intensity thresholding algorithm,
which segmented about the same amount of points for
RPE and ILM. The largest RSPPs of the RPE and
ILM were noted in the proposed hybrid algorithm.

ONH surface depth (ONHSD) (green lines) represents
the average perpendicular distances from a line joining
Bruch’s membrane opening (BMO) points (red points
and brown line) to the ILM surface (blue line) (Fig. 5).
ONHSD was calculated as an average for the analysis.
ONHSD agreement between the manually detected sur-
face (i.e., ILM layer) and the proposed hybrid algorithm
is shown in the Bland–Altman[26] plot in Fig. 6. The aver-
age difference of ONHSD was 1.58%� 1.87%, which
shows good agreement between the manually traced
and automatically delineated surfaces.

The graph-based approach[27–29] for the segmentation of
SDOCT images is an efficient algorithm that warrants
total optimality of the results with respect to the cost
function. High resolution and a large number of SDOCT
images require substantial computational power and
processing time for the calculation. The processing time
with the graph-based algorithm could be reduced in multi-
ple ways. In this study, a hybrid algorithm was proposed,
which integrated the ability to incorporate a fast and sim-
ple intensity thresholding algorithm and the robustness of
the graph-based approach in the presence of noise, as well
as disease induced disruptions. The aim of this study is to
increase segmentation accuracy and reduce the computa-
tional processing time for the segmentation of RPE and
ILM layers in the SDOCT images.

The results show the hybrid algorithm is accurate and
reproducible. The processing time of the graph-based
algorithm (34.3 s) was about four times slower than the
average processing time of the proposed hybrid algorithm
(9.3 s), and the intensity thresholding algorithm required
3.7 s, which was the fastest algorithm among these three

Table 1. Summary of the Processing Time of One Image, Mean and Standard Deviation of ILM and RPEComparison of
Relative Difference with Manually Segmented Image, and Dice’s Coefficients of 120 Images

Algorithm Processing time (s) AMRSD (μm) Dice’s coefficient (%)

Intensity thresholding algorithm 3.7 5.42� 0.03 96.8� 1.7

Graph-based algorithm 34.3 24.7� 0.23 74.1� 14.8

Proposed hybrid algorithm 9.3 5.73� 0.03 96.6� 1.6

Table 2. Summary of RSPP Comparison for RPE and
ILM Layers of 120 Images

Algorithm RPEa ILMa

Intensity thresholding
algorithm

52.2� 18.5 84.6� 12.8

Graph-based algorithm 76.9� 15.9 76.9� 12.4

Proposed hybrid algorithm 88.3� 9.5 88.5� 9.8
aPercentage (mean� standarddeviation).
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algorithms. However, 52% of data points of the RSPP
of the intensity thresholding could be segmented by
the intensity thresholding algorithm compared with the
manually segmented ILM layer profile. The RSPP of
the proposed hybrid algorithm showed the highest value
in both ILM and RPE layers compared to the intensity
thresholding algorithm and graph-based algorithm
(both > 88%).
AMRSD of the proposed hybrid algorithm

(5.73� 0.03 μm) was lower than that of the graph-based
algorithm (24.7� 0.23 μm) and showed a comparable
value with that of the intensity algorithm. The proposed
hybrid algorithm assumes the RPE layer is continuous.

However, this layer can be distorted by disease and arti-
facts. The algorithm can digress from the RPE layer,
which results from gradient changes instead of smooth
segmentation.

Dice’s coefficient of the proposed hybrid algorithm is
96.6%� 1.6%, which shows substantially higher consis-
tency with the manually segmented image in comparison
with the graph-based algorithm (74.1%� 14.8%). The
proposed hybrid algorithm robustly segmented both the
RPE and ILM layers in SDOCT images. This method
has certain limitations when applied to the RPE segmen-
tation task for finding BMO points. Dice’s coefficients var-
ied through different images due to different image noise
levels. Dice’s coefficient standard deviation was 1.6 among
the images. The variability of the graph algorithm was sig-
nificantly lower, showing a standard deviation of 14.8.

SDOCT imaging has shown to be effective for the quan-
titative study of retinal structures in human retinas. Intra-
retinal layer segmentation is important for aiding in a
better understanding of the pathophysiology of systemic
diseases[27]. The proposed hybrid algorithm shows a high
degree of accuracy and faster processing time, thus, mak-
ing it more preferable for noninvasive quantification of
human retinal layers in clinical analysis. The hybrid
algorithm [Fig. 7(b)] could recognize and segment nearly
invisible and exceedingly low contrast ILM layers from a
primary open-angle glaucoma patient [red box, Fig. 7(a)]
SDOCT image. In addition, the hybrid algorithm could
recognize the RPE layer from two-level high contrast
layers [green box, Fig. 7(a)].

In summary, we have proposed and presented a fast and
accurate hybrid algorithm integrating the fast and simple
intensity thresholding algorithm and the robustness of the
graph-based approach for the segmentation of RPE and
ILM layers in SDOCT images. Comparative studies of
the hybrid algorithm segmented profiles with the segmen-
tation results from the intensity thresholding algorithm,
graph-based algorithm, and manual segmentation in
120 SDOCT images showed good accuracy of 96.6%.
The processing time of one image by the hybrid algorithm
is 9.3 s, which is only one-fourth of the processing time
required for the graph algorithm, which is a great advance
in order to bring real-time image analysis into a clinical
routine application.

Fig. 5. Depiction of the ONHSD, which represents an average of
perpendicular distances from a red line joining two BMO points
to the ILM layer.

Fig. 6. Bland–Altman plot of the ONHSD measurement be-
tween the proposed hybrid algorithm and manual segmentation.

Fig. 7. Illustration of the (a) raw image of ONH from SDOCT of a primary open-angle glaucoma patient and (b) automatically
segmented image with the hybrid algorithm of ILM (blue line) and RPE (red line) layers.
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