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We propose a novel on-line beam diagnostic method based on single-shot beam splitting phase retrieval. The
incident beam to be measured is diffracted into many replicas by a Dammann grating and then propagates
through a weakly scattering phase plate with a known structure; the exiting beams propagate along their original
direction and form an array of diffraction patterns on the detector plane. By applying the intensity of diffraction
patterns into an iterative algorithm and calculating between the grating plane, weakly scattering plane, and
detector plane, the complex field of the incident beam can be reconstructed rapidly; the feasibility of this method
is verified experimentally with wavelengths of 1053 and 632.8 nm.
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In a high-power laser system, the quality of the laser beam
performs an important role[1]. However, due to the com-
plexity of high-power laser systems containing hundreds
of optical elements, the quality of the laser beam may
be influenced by the material defects, manufacturing
error, gas density variations, thermal distortion, and
dust in the environment, which will lead to the deforma-
tion of the wave-front and failure of the experiment.
The traditional beam diagnostics method includes the
interferometers[2] and Shack–Hartmann[3,4] sensors, where
the interferometers have high accuracy, but their complex
structure and high demands of the environment make
them difficult to measure the on-line beam quality. The
Shack–Hartmann sensors measure the wave-front by di-
viding it into subbeams with arrays of microlenses and
analyzing focal spot displacement[5], and it has been ap-
plied successfully in the OMEGA extended performance
(EP) laser system to measure the focal spot at full
energy[6]. However, the resolution of the Shack–Hartmann
sensor is limited by its finite number of microlenses[7].
Phase retrieval is an effective technique for estimating
the wave-front based on a series of intensity measure-
ments[8,9]. It has been applied to the high-energy laser
system focal spot characterization[10]. The phase retrieval
method contains a variety of algorithms like the
Gerchberg–Saxton (G-S) algorithm[11], the Yang–Gu algo-
rithm[12], the Eerror-reduction (ER) algorithm[13], and the
hybrid input–output (HIO) algorithm[14]. In 2010, Zhang
proposed the coherent modulation imaging (CMI) algo-
rithm[15,16], which uses only one diffraction pattern to re-
cover the phase of the incident beam and is able to
achieve fast converge due to the random phase modula-
tion. The CMI technique has been successfully
applied in wave-front diagnostics in high-power laser
systems[17]. All of these algorithms can realize phase
reconstruction with one single measurement. However,

since only one frame of the diffraction pattern is recorded,
the information coded is quite limited, and they always
suffer disadvantages of a small field of view, low converg-
ing speed, and low reliability. The ptychography algo-
rithm[18] proposed by Rodenburg uses a single probe to
laterally scan the target sample in overlapping positions
and record the diffraction patterns; by applying the pty-
cholographic iterative engine (PIE) algorithm[19] to the in-
tensity of recorded diffraction patterns, the amplitude and
phase of the target sample can be reconstructed rapidly
with high resolution. However, the data acquisition of
the PIE experiment generally takes 10 min or more[20];
in case of an X-ray, the acquisition time will even be
hours[21]. The long data acquisition time requires high sta-
bility of the experimental environment, and all of these
disadvantages make the PIE algorithm unavailable for dy-
namic imaging. To speed up the data acquisition, our re-
search group proposed a grating-based single-shot PIE
method[22]. This method uses a two-dimensional grating
to split the illuminating probe into overlapping beam clus-
ters illuminating on the sample. In 2016, Cohen and
Sidorenko[23] proposed using a pinhole array to generate
an array of overlapping illuminating probes. Since these
two methods replace the probe scanning process with
overlapping multi-beam illumination to realize PIE with
a single measurement, the data acquisition time is obvi-
ously shortened. However, the beam clusters illuminating
on the sample are required to be overlapped, and, at the
recording plane, they are required to be separated.
These requirements make the experiment setup accord-
ingly complex.

In this Letter, on-line beam diagnostics based on
single-shot beam splitting phase retrieval is proposed.
The incident beam to be measured is split into ten or more
replicas by a Dammann grating; these replicas illuminate
on a weakly scattering plate with known structure. Since
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there is no overlap between the neighboring replicas,
the experiment setup can be simplified, and the diffraction
patterns recorded on the charge coupled device (CCD) are
easy to separate with each other totally by iteratively cal-
culating between three planes: the grating plane, weakly
scattering plane, and detector plane. The complex field
of the incident beam can be reconstructed rapidly and pre-
cisely. Compared with the CMI technique, this method uses
a single-shot diffraction pattern, which has more replicas,
and thus, the signal to noise ratio obviously improves.
The principle of the single-shot beam splitting phase

retrieval can be shown schematically with Fig. 1. The
incident beam to be measured is diffracted into many rep-
licas by a Dammann grating, and then all these replicas
are incident on a weakly scattering plate with a known
structure. The exiting waves propagate roughly along
their own direction and form an array of diffraction pat-
terns on the detector plane. If the diffraction angle of
Dammann grating is large enough, there will be no overlap
between the neighboring diffracted beams, and the diffrac-
tion patterns recorded on the detector plane will be clearly
isolated from each other. Since these recorded diffraction
patterns are formed by the diffracted replicas (except for
different ramps), they are in fact the same as that recorded
by sequentially scanning the weakly scattering plate
through a single laser beam. If the complex fields of dif-
fracted replicas are known, the transmitting function of
the weakly scattering plate can be reconstructed by a stan-
dard PIE algorithm, inversely, the complex field of dif-
fracted replicas can be recovered when the transmitting
function of the weakly scattering plate is known. If the
transmitting function of the weakly scattering plate is
known in advance, the condition of overlapping illumina-
tion on it will be unnecessary; this makes the experiment
much easier to realize.
In real experiments, the structure of the Dammann gra-

ting cannot be ideally perfect. The diffracted beams from
it will not be exactly the same as each other. Then, in the
iteration process, the algorithm cannot be applied only on
the plane of the weakly scattering plate, the transmitting
function of the Dammann grating must also be considered.
A standard PIE algorithm can be applied in advance in
the experiment to obtain the exact structure of the Dam-
mann grating Qðx; yÞ and the weakly scattering plate

Pðx; yÞ. Firstly, the weakly scattering plate is moved
out from the optical path, and the Dammann grating is
laterally scanned across the illuminating beam at overlap
positions. The mnth order of the transmitting field of the
Dammann grating can be reconstructed with the mnth re-
corded diffraction pattern. Then the weakly scattering
plate is put back into the light path and scanned laterally
across the illuminating beam arrays. Its transmitting func-
tion Pm:nðx; yÞ of the region illuminated by the mnth dif-
fracted beam can be reconstructed in the same way. With
the known transmitting functions of the Dammann gra-
ting and the weakly scattering plate, by giving an initial
guess Gkðx; yÞ to the light field incident on the Dammann
grating, the complex field of the incident beam can be re-
constructed iteratively with the following steps:
1. The mnth diffracted beam Gk;m;nðx; yÞ is computed

as Gkðx; yÞ·Qmnðx; yÞ and propagates to the weakly
diffractive plate by computing Illuk;m;n ¼
IðGk·Qmn;L1Þ, where IðGk·Qmn;L1Þ represents
the Fresnel propagation of Gk·Qmn by a distance
of L1.

2. Calculate the exiting field of Ok;m;n ¼ Illuk;m;n � P
from the weakly diffractive plate and propagate it
to the detector as Diffk;m;n ¼ IðOk;m;n;L2Þ.

3. Replace the modulus of Diffk;m;n with the square
root of Im;n and keep the phase of Diffk;m;n unchanged.
The complex field on the CCD chip is updated as
Diff 0k;m;n ¼ ���������

Im;n
p

expðjφm;nÞ, where φm;n is the phase
of Diffk;m;n.

4. Propagate Diff 0k;m;n back to the weakly scattering
plate plane to obtain an updated exiting field
O0

k;m;n ¼ I−1ðDiff 0k;m;n;L2Þ, where I−1 represents the
inverse Fresnel propagation, and update the illumi-
nating beam on the weakly diffractive plate as

Illu0k;m;n ¼ Illuk;m;n þ
jPj

jPjmax

conjðPÞ
jPj2þα

ðO0
k;m;n −Ok;m;nÞ;

(1)

where α is a constant to suppress the noise, and, to
avoid the denominator becoming zero, we set α ¼ 1
here. This updated equation is similar to the updated
equation in ptychography[16], where the parameter β is
set to be 1.

Fig. 1. Schematic diagram of single-shot beam splitting phase
retrieval.

Fig. 2. Experimental setup of single-shot beam splitting phase
retrieval.
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Fig. 3. 5 × 5 orders of transmission functions of the Dammann grating: (a) the transmitting modulus and (b) the transmitting phase.

Fig. 4. (a) The transmitting modulus and (b) the transmitting phase of the 5 × 5 orders of transmission functions of the weakly
scattering plate at a wavelength of 632.8 nm; (c) the transmitting modulus and (d) the transmitting phase of the 5 × 5 orders of
transmission functions of the weakly scattering plate at a wavelength of 1053 nm.
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5. Propagate Illu0k;m;n back to the Dammann grating
plane to get an updated exiting beam Rk;m;n ¼
I−1ðIllu0k;m;n;L1Þ, and then update the illuminating
beam Gk;m;n on the Dammann grating according to
Eq. (2):

Gk ¼Gk þ
jQmnj

jQmnjmax

conjðQmnÞ
jQmnj2þα

ðRk;m;n −Gk;m;n �QmnÞ:

(2)

6. Jump to step (1) to repeat the above computations on
other diffracted beams until all diffracted beams are
addressed.

7. Calculate the reconstruction error with Eq. (3):

Errork ¼
P

m;n

�
�
�

���������
Im;n

p
− jDiffk;m;nj

�
�
�
2

P
m;n Im;n

: (3)

8. If the reconstruction error is larger than the expected
value, jump to step (1) to start another round of iter-
ative computations, else propagateGk to the aperture

plane to get the transmitted field Tðx; yÞ of the inci-
dent beam. The pseudo-code algorithm (Appendix A)
of this iteration process can be seen at the bottom of
this article.

The experiment setup is shown in Fig. 2, where an aper-
ture with diameter of 2 mm is adopted to limit the size of
incident beam. The Dammann grating has 5 × 5 diffrac-
tion orders, and the angel between two neighboring diffrac-
tion orders is 6.787°. At the wavelength of 632.8 nm, the
weakly diffractive plate is made by recording speckle
patterns on a holographic plate and bleaching it with
the solution of K3FeðCNÞ6, at a wavelength of 1053 nm.
The weakly diffractive plate is made by smearing the glass
slide with polyethylene spheres with diameter of 2 μm. The
detector is a Lumenera CCD with 4008 pixel × 2672 pixel,
where the pixel size is 9 μm. The distances between the
Dammann grating, the weakly scattering plate, and the
CCD are 106.48 and 55.18 mm, respectively. A lens with
focal length 100 mm is placed before the Dammann grating
to collect more light to the CCD. Thus, the illuminating
beam on the Dammann grating is a sphere wave, and
the incident wave at the aperture plane is a plane wave.

Fig. 5. (a1) The recorded diffraction pattern array at a wavelength 1053 nm; (a2) the recorded diffraction pattern array at a wave-
length 632 nm; (b1) the reconstructed amplitude and (b2) phase of the light field incident on the grating at a wavelength of 1053 nm by
the beam splitting phase retrieval algorithm; (c1) the reconstructed amplitude and (c2) phase of the light field incident on the grating
at a wavelength of 1053 nm by the PIE algorithm; (d1) the reconstructed amplitude and (d2) phase of the light field incident on the
grating at a wavelength of 632.8 nm by the beam splitting phase retrieval algorithm; (e1) the reconstructed amplitude and (e2) phase of
the light field incident on the grating at a wavelength of 632.8 nm by the PIE algorithm.

Fig. 6. (a) Reconstructed amplitude and (b) phase of the incident beam at the aperture plane at a wavelength of 632 nm by the beam
splitting phase retrieval algorithm; (c) reconstructed amplitude and (d) phase of the incident beam at the aperture plane at a wave-
length of 1053 nm by the beam splitting phase retrieval algorithm.
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To get the accurate transmitting function of the
Dammann grating and the weakly scattering plate, we
use translation stages (Thorlabs PMZ-8) to scan them,
and then we adopt a standard PIE algorithm to recon-
struct their complex field. The Dammann grating is
scanned in 10 × 10 overlap positions with a step of
0.198 mm. At each position, a 5 × 5 diffraction patterns
array is recorded, and we split the 5 × 5 diffraction array
into 25 independent sub-diffraction patterns. By using
them, the modulus and the transmitting phase of each
diffraction order can be reconstructed, which is shown
in Fig. 3. It can be seen that the transmitting modulus
and phase of each diffraction order are different from those
of the other. The units of the modulus and phase measured
for the 5 × 5 diffraction orders are arbitrary and in radi-
ans, since the amplitude can represent the transmittance,
and the range of phase changes from−π to π. The units are
the same in Figs. 4, 5, and 6.
For measuring the weakly scattering plate, it is also

scanned in 10 × 10 positions with a step of 0.297 mm.
At each position, the detector also records a 5 × 5 diffrac-
tion array, and the reconstructed transmitting modulus of
and phase of the weakly scattering plate at wavelengths
632.8 and 1053 nm are shown in Fig. 4, where the sub-
image shows the structure of the region corresponding
to different diffraction orders.
To verify the feasibility of this method, we use a laser

beam with wavelengths 1053 and 632.8 nm as the incident
beam. The diffraction patterns are shown in Figs. 5(a1)
and 5(a2). We can find that all of the diffraction patterns
are isolated from each other. Since the diffracted replicas
illuminate different separate regions of the weakly

scattering plate, the recorded diffraction patterns are to-
tally different from each other. By taking these recorded
patterns into the iterative algorithm mentioned above
with 200 iterations, the complex field of the sphere wave
before the Dammann grating can be reconstructed, as
shown in Figs. 5(b1), 5(b2), 5(d1), and 5(d2). Compared
with the complex field of the illuminating beam recon-
structed by the PIE algorithm [as shown in Figs. 5(c1),
5(c2), 5(e1), and 5(e2)], when recovering the transmitting
field of the Dammann grating, the reconstructed quality
of this method is quite the same as the PIE algorithm.
Figures 6(a), 6(b), 6(c), and 6(d) show the reconstructed
modulus and phase of the incident beam at the aperture
plane, where the plane wave is recovered. It can be seen
that both the plane wave and sphere wave can be recon-
structed precisely.

To check the resolution of this method, a USAF 1951
resolution target is put at the aperture plane. Its transmit-
ting modulus is reconstructed, and the results are shown in
Fig. 7. It can be seen that at a wavelength 1053 nm, the
third element of the fourth group is clearly reconstructed,
corresponding to a spatial resolution of 49.5 μm. The sec-
ond element of the fifth group can be clearly distinguished
at wavelength of 632.8 nm, corresponding to a spatial res-
olution of 27.8 μm.

The curve of error changed with iteration times in the
log scale is shown in Fig. 7(e). At the wavelength of
632.8 nm, the reconstruction error reduces to 9.95% within
50 iteration times and converges to 9.46% after 200 iter-
ation times. When the wavelength is 1053 nm, the
reconstruction error reduces to 1.88% within 30 iteration
times and converges to 1.83% after 150 iteration times,

Fig. 7. (a), (b) The reconstructed amplitude of USAF 1951 resolution target and its amplification of a dashed red box at a wavelength of
1053 nm in log scale; (c), (d) the reconstructed amplitude of USAF 1951 resolution target and its amplification of a dashed red box at a
wavelength of 632.8 nm in log scale; (e) the curve of error changed with iteration times in log scale at wavelengths of 632.8 and 1053 nm.
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both corresponding to a fast converging speed. The con-
vergence criteria of our algorithm are that when the error
of one iteration has little difference with the error of next
iteration, that is, the error of iteration changes very slowly
or remains unchanged, then, the iterative algorithm
reaches convergence. In Fig. 7(e), the reconstruction
error of both wavelengths remains almost unchanged after
200 iteration times (at a wavelength 632.8 nm, the
reconstruction error remains 9.46% after 200 iteration
times; at a wavelength 1053 nm, the reconstruction error
remains 1.82% after 200 iteration times), and thus, 200
iterations are set to be a good stopping condition. That
9.46% is acceptable for 632.8 nm does not mean a more
stringent condition is imposed to 1053 nm, because this
single-shot phase retrieval system under two different
wavelengths with two different weakly scattering plates
may converge to two different error values independently.
In this Letter, a single-shot beam splitting phase

retrieval method for on-line beam detection has been pro-
posed. The incident beam to be measured is diffracted into
many replicas by a Dammann grating. These replicas
propagate along their own directions and pass through
a weakly scattering plate with a known structure. The dif-
fraction patterns can be recorded with a single measure-
ment. By adopting the iterative algorithm between the
grating plane, the weakly scattering plate plane, and
the record plane, the complex field of the incident beam
can be reconstructed; the feasibility of this method has
been verified experimentally with wavelengths 632.8
and 1053 nm. Both the incident sphere wave and plane
wave can be reconstructed rapidly and precisely. Since
there is no overlap between the neighboring illuminating
beams on the weakly scattering plate, the experiment
setup is simplified and easy to be applied in on-line beam
diagnostics.

Appendix A: Pseudo-code Algorithm

%suppose the transmittance function of 5 × 5 diffraction
orders of Dammann
%grating is grating{i,j}(i=1,2 . . . . . . 5;j=1,2 .. . . . . 5), and
the transmittance
%function of corresponding weakly scattering plate is
%object{i,j}(i=1,2 . .. . . . . 5;j=1,2 . .. . . . . 5). The distance
between the Dammann grating
%and the weakly scattering plate is z1, the distance
between the weakly
%scattering plate and the plane of CCD chip is z2. The
angular spectrum
%theory is used to propagate the beam between the
grating plane, the weakly
%scattering plate plane and the CCD plane, the transmis-
sion function
%of distance z1 is H1, and the transmission function of
distance z2 is
%H2.Suppose the intensity of the ijth diffraction pattern
recorded at CDD
%plane is ccdampl{i,j}. Give the incident beam on the
Dammann grating plane

%an initial guess “illu”. The iterative process of point 1 to
point 8 can
%be written as follows:
alpha=1; %alpha is the parameter in the update equation
to suppress the noise
%and avoid the denominator to be zero
for k1=1:1:N1; %N1 is the iteration times

kk=1;
for i=1:1:5;
for j=1:1:5;

input1=ifft2(H1.*fft2(illu.*grating{i,j}));
% input1 represents the illuminating beam on
the % object{i,j}
ccd_record=ifft2(H2.*fft2(input1.*object
{i,j})); % ccd_record represents the complex
field on % the CCD plane
ccd_record_update=sqrt(ccdampl{i,j}).*exp
(1i.*angle(ccd_record)); % replace the
amplitude
%of ccd_record with recorded amplitude
sqrt(ccdampl{i,j}) while remain the phase
unchanged
output1=ifft2(fft2(ccd_record_update).
*conj(H2));
input1=input1+(conj(object{i,j}).*abs
(object{i,j}).*(output1-object{i,j}.
*input1))./((abs(object{i,j}).^2+alpha).
*(max(max(abs(object{i,j})))));
output_grating=ifft2(fft2(input1).
*conj(H1));
illu=illu+(conj(grating{i,j}).*abs(grating
{i,j}).*(output_grating-grating{i,j}.*illu))./
((abs(grating{i,j}).^2+alpha).*(max(max
(abs(grating{i,j})))));
up(:,kk)=sum(sum((abs(ccd_record)-sqrt
(ccdampl{i,j})).^2));
down(:,kk)=sum(sum(sqrt(ccdampl
{i,j}).^2));

kk=kk+1;
end

end
error(:,k1)=sum(sum(up))./sum(sum(down));
% calculate the iteration error of every iteration
if abs(error(:,k1)-error(:,k1-1))<0.00002

break;
end

end
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