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Electronic speckle pattern interferometry (ESPI) and digital speckle pattern interferometry are well-
established non-contact measurement methods. They have been widely used to carry out precise deformation
mapping. However, the simultaneous two-dimensional (2D) or three-dimensional (3D) deformation measure-
ments using ESPI with phase shifting usually involve complicated and slow equipment. In this Letter, we solve
these issues by proposing a modified ESPI system based on double phase modulations with only one laser and
one camera. In-plane normal and shear strains are obtained with good quality. This system can also be de-
veloped to measure 3D deformation, and it has the potential to carry out faster measurements with a high-
speed camera.
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doi: 10.3788/COL201816.071201.

In-plane deformations can be easily measured by a simple
electronic speckle pattern interferometry (ESPI) measur-
ing system[1]. In such a system, the temporal phase-
shifting technique is often applied for phase retrieval
to improve the performance[2]. However, in a standard
two-beam configuration, only one displacement compo-
nent is measured.
In order to measure the two-dimensional (2D) in-plane

displacement field [or the whole three-dimensional (3D)
displacement field], several solutions have been proposed.
The most direct one is to use digital speckle photography
(DSP) (or to combine DSP with out-of-plane ESPI for
the 3D measurement)[3]. Nevertheless, the sensitivity of
DSP is not as good as that of ESPI. A natural solution
is then to combine ESPI measuring systems[4,5]. More re-
cently, in-plane ESPI measurement systems were notably
combined with out-of-plane ESPI to perform 3D analysis
using optical switches, though with a limited time reso-
lution (for example, the acquisition time for the “Q-300
3D-ESPI System” is 3.5 s for 3D analysis), due to the iter-
ative process requirement[6–8]. To solve the time issue, a
spatial phase-shifting technique can be applied[6]; how-
ever, it often makes the system substantially more com-
plex and expensive.
In this Letter, we show the possibility of doing simulta-

neous 2D measurement using the widely recognized ESPI
technique and a single laser without switches. The optical
arrangement is shown in Fig. 1. There are three coherent
laser beams originating from a single laser: Beam 1, Beam
2, and Beam 3. The phases of Beam 1 and Beam 2 can be

modulated by the corresponding piezo-actuated mirrors.
When two temporal phase modulation functions, F1ðtÞ
and F2ðtÞ, are applied to them, respectively, the scalar
light field of the subjective speckles Eðx; yÞ can be ex-
pressed as

Eðx; yÞ ¼ A1ðx; yÞei½2πf ctþθ1ðx;yÞþF1ðtÞ�

þ A2ðx; yÞei½2πf ctþθ2ðx;yÞþF2ðtÞ�

þ A3ðx; yÞei½2πf ctþθ3ðx;yÞ�: (1)

Amðx; yÞ and θmðx; yÞ are the amplitude and the initial
phase of Beamm (m ¼ 1; 2; 3) at point (x, y), respectively,
and f c is the optical frequency of the laser.

On the sample surface, the light intensity I ðx; yÞ can be
expressed as

I ðx; yÞ ∝ jEðx; yÞj2
¼ ½A2

1ðx; yÞ þ A2
2ðx; yÞ þ A2

3ðx; yÞ�
þ 2A1ðx; yÞA2ðx; yÞ cos½θ1ðx; yÞ þ F1ðtÞ
− θ2ðx; yÞ− F2ðtÞ�
þ 2A1ðx; yÞA3ðx; yÞ cos½θ1ðx; yÞ þ F1ðtÞ
− θ3ðx; yÞ�
þ 2A2ðx; yÞA3ðx; yÞ cos½θ2ðx; yÞ þ F2ðtÞ
− θ3ðx; yÞ�: (2)
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After a small displacement uðx; yÞ, the light intensity
turns into

I 0ðx; yÞ ∝ jE 0ðx; yÞj2
¼ ½A2

1ðx; yÞ þ A2
2ðx; yÞ þ A2

3ðx; yÞ�
þ 2A1ðx; yÞA2ðx; yÞ cos½θ01ðx; yÞ þ F1ðtÞ
− θ02ðx; yÞ− F2ðtÞ�
þ 2A1ðx; yÞA3ðx; yÞ cos½θ01ðx; yÞ þ F1ðtÞ
− θ03ðx; yÞ�
þ 2A2ðx; yÞA3ðx; yÞ cos½θ02ðx; yÞ þ F2ðtÞ
− θ03ðx; yÞ�; (3)

with

θ01ðx; yÞ ¼ θ1ðx; yÞ þ
2π
λ
ðn1 − nsÞ·uðx; yÞ; (4)

θ02ðx; yÞ ¼ θ2ðx; yÞ þ
2π
λ
ðn2 − nsÞ·uðx; yÞ; (5)

θ03ðx; yÞ ¼ θ3ðx; yÞ þ
2π
λ
ðn3 − nsÞ·uðx; yÞ; (6)

where λ is the wavelength of the laser, nm is the unit vector
along the illumination direction of Beam m (m ¼ 1; 2; 3),
and ns is the unit vector along the viewing direction. nm
and ns can be roughly considered to be the same for every
point (x, y) on the sample surface.
If we choose the following linear (or sawtooth) modula-

tion functions:

F1ðtÞ ¼ 2πf 1t; (7)

F2ðtÞ ¼ 2πf 2t; (8)

then we have

I ðx; yÞ ∝ jEðx; yÞj2
¼ ½A2

1ðx; yÞ þ A2
2ðx; yÞ þ A2

3ðx; yÞ�
þ 2A1ðx; yÞA2ðx; yÞ cos½θ1ðx; yÞ− θ2ðx; yÞ
þ 2πðf 1 − f 2Þt�
þ 2A1ðx; yÞA3ðx; yÞ cos½θ1ðx; yÞ− θ3ðx; yÞ
þ 2πf 1t�
þ 2A2ðx; yÞA3ðx; yÞ cos½θ2ðx; yÞ− θ3ðx; yÞ
þ 2πf 2t�:

(9)

Obviously, when f 1, f 2 and jf 1 − f 2j are not equal to
each other with a lock-in detection at f 1, θ1ðx; yÞ−
θ3ðx; yÞ can be extracted; with a lock-in detection at f 2,
θ2ðx; yÞ− θ3ðx; yÞ can be extracted[9]. The same procedure
can be carried out to obtain θ01ðx; yÞ− θ03ðx; yÞ and
θ02ðx; yÞ− θ03ðx; yÞ. If we set

C1ðx; yÞ ¼ ½θ01ðx; yÞ− θ03ðx; yÞ�− ½θ1ðx; yÞ− θ3ðx; yÞ�;
(10)

C2ðx; yÞ ¼ ½θ02ðx; yÞ− θ03ðx; yÞ�− ½θ2ðx; yÞ− θ3ðx; yÞ�;
(11)

then, according to Eq. (4)–(6), we have

C1ðx; yÞ ¼
2π
λ
ðn1 − n3Þ·uðx; yÞ; (12)

C 2ðx; yÞ ¼
2π
λ
ðn2 − n3Þ·uðx; yÞ: (13)

The z components of n1, n2, and n3 are almost equal,
so they will cancel each other out in Eqs. (12) and (13).

Fig. 1. Setup for ESPI measurement. (a) Top view; (b) 3D view. The camera is above the sample to take pictures of its surface. The
height and focus of the camera can be adjusted to get different magnifications. Laser, CNI MSL-532 (diode-pumped solid-state laser,
532 nm, 20 mW). Camera, Flea®3 FL3-U3-13S2M-CS 1/3”monochrome USB 3.0 Camera. CL, concave lens; CM, concave mirror; BS,
beam splitter; PZTþM, piezo-actuated mirror.
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Concerning the x and y components of n1, n2, and n3, we
can see from Fig. 1 that ðn1 − n3Þ is parallel to the Y axis,
and ðn2 − n3Þ is parallel to the X axis. So, C 1ðx; yÞ and
C2ðx; yÞ can be expressed as

C1ðx; yÞ ¼ g·uyðx; yÞ; (14)

C2ðx; yÞ ¼ g·uxðx; yÞ; (15)

where g is a measurable constant, uxðx; yÞ and uyðx; yÞ
are the x and y components of uðx; yÞ, respectively.
This means the 2D in-plane displacement field can be
measured. The whole procedure is briefly illustrated
in Fig. 2.
This method can also be extended to carry out 3D dis-

placement field measurements without increasing acquis-
ition time and without an additional laser or camera: if the
laser is separated into a fourth coherent beam and its
direction of illumination is n4, then this system can be used
to measure the 3D displacement field, as long as n4 − n3
has a non-zero z component, and this fourth beam is
modulated at an appropriate frequency.
It should be noticed that when piezoelectric actuators

are driven to make sawtooth displacements, the precision
cannot be guaranteed, especially at a high frequency,
where the fly-back time of the mirror cannot be neglected.
The nonlinearity and noise generated by the sudden re-
turn becomes unacceptable when high-speed measure-
ment is required. This issue can be addressed with
sinusoidal phase modulations such as

F1ðtÞ ¼ a sin 2πf 1t; (16)

F2ðtÞ ¼ a sin 2πf 2t; (17)

where a is the amplitude of phase modulation. It should
be noticed that f 1 and f 2 are not randomly chosen. It is

favorable to choose coprime integers, as will be detailed
later. Now we have

I ðx; yÞ ∝ jEðx; yÞj2
¼ ½A2

1ðx; yÞ þ A2
2ðx; yÞ þ A2

3ðx; yÞ�
þ 2A1ðx; yÞA2ðx; yÞ cos½ θ1ðx; yÞ− θ2ðx; yÞ
þa sin 2πf 1t − a sin 2πf 2t�
þ 2A1ðx; yÞA3ðx; yÞ cos½θ1ðx; yÞ− θ3ðx; yÞ
þ a sin 2πf 1t�
þ 2A2ðx; yÞA3ðx; yÞ cos½θ2ðx; yÞ− θ3ðx; yÞ
þ a sin 2πf 2t�: (18)

In Eq. (18), according to the Jacobi–Anger expansion,
in the frequency domain, the third term will be distributed
at the integer multiples of f 1, and the fourth term will
be distributed at the integer multiples of f 2. If we set
a ¼ 2.4048 rad, so that J0ðaÞ ¼ 0 (J 0 is the zeroth Bessel
function of the first kind), then both of them will not con-
tain any signal at 0 Hz. So, in the frequency domain, they
will not overlap with each other until the least common
multiple of f 1 and f 2, which is 63 Hz in our case
(f 1 ¼ 9 Hz, f 2 ¼ 7 Hz, 9 and 7 are coprime integers).
This means these two terms can be efficiently separated.

As for the second term in Eq. (18), we canmake use of the
trigonometric formulas (sum/difference identities) to get

cos½θ1ðx; yÞ− θ2ðx; yÞ þ a sin 2πf 1t − a sin 2πf 2t�
¼ cos ½θ1ðx; yÞ− θ2ðx; yÞ� cosða sin 2πf 1tÞ cosða sin 2πf 2tÞ
− cos ½θ1ðx; yÞ− θ2ðx; yÞ� sinða sin 2πf 1tÞ sinða sin 2πf 2tÞ
− sin ½θ1ðx; yÞ− θ2ðx; yÞ� sinða sin 2πf 1tÞ cosða sin 2πf 2tÞ
þ sin½θ1ðx; yÞ− θ2ðx; yÞ� cosða sin 2πf 1tÞ sinða sin 2πf 2tÞ:

(19)

If we analyze the first term in Eq. (19) with the Jacobi–
Anger expansion when J0ðaÞ ¼ 0, then we have

cosða sin 2πf 1tÞ cosða sin 2πf 2tÞ

¼ 4
X∞

p¼1

X∞

q¼1

J 2pðaÞJ2qðaÞ cosð2p·2πf 1tÞ cosð2q·2πf 2tÞ;

(20)

with

cosð2p·2πf 1tÞ cosð2q·2πf 2tÞ

¼ 1
2
cosð2p·2πf 1t þ 2q·2πf 2tÞ

þ 1
2
cosð2p·2πf 1t − 2q·2πf 2tÞ; (21)

where p and q are positive integers. Through Eq. (21), we
know that this term contains signals at the frequencies of
(j2pf 1 � 2qf 2j). Likewise, by analyzing the other threeFig. 2. Flowchart of the 2D displacement measurement.
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terms in Eq. (19), it can be concluded that the second term
in Eq. (18) contains (jpf 1 � qf 2j) signals.
Since p and q are positive integers, the solutions for

jpf 1 � qf 2j ¼ nf 1 or jpf 1 � qf 2j ¼ nf 2 (n is a positive in-
teger) can only be found when p or q is relatively
large, which represents the high-frequency signal where
the intensity is usually very small [since JpðaÞ ≈ 0 or
JqðaÞ ≈ 0]. So, we can estimate that it will not have too
much influence on the interesting frequencies. A simple
simulation is done with f 1 ¼ 9 Hz, and f 2 ¼ 7Hz, and
the result is shown in Fig. 3 to illustrate this point.
We can now draw a direct link between the four terms in

Eq. (18) and the frequency spectrum. The first term cor-
responds to the signal at 0 Hz, the third term corresponds
to signals at pf 1, the fourth term corresponds to signals at
qf 2, and the second term corresponds to signals at other
frequencies. So, just like using linear modulation, informa-
tion can be easily sorted out so that the 2D displacement
field can be measured. In fact, by simply replacing the
lock-in detection algorithm with the traditional sinusoidal
phase modulation algorithm (see Ref. [10]) or the recently
proposed generalized lock-in detection algorithm (see
Refs. [9,11,12]), the needed phase information can be ob-
tained. Likewise, while dealing with the same set of data, if
we set the demodulation frequency at f 1 in the algorithm,
then we can get C 1ðx; yÞ; if we set it at f 2, then we can get
C2ðx; yÞ. With C1ðx; yÞ and C 2ðx; yÞ, the 2D displacement
field uxðx; yÞ and uyðx; yÞ can be obtained.
We used a bending specimen, as shown in Fig. 4. It is a

test sample fabricated by the company HOLO 3[13].
First, we make sure that there is already an initial

contact between the micrometer screw and the bending
specimen. Then, the two phase modulations are turned
on, and a short video (1 s, 63 frames per second) is re-
corded. Likewise, we record another video after turning
the micrometer screw so that the deformation state
changes. By analyzing these two videos, we can measure
the 2D displacement field.
When applying sinusoidal phase modulations described

by Eqs. (16) and (17) with f 1 ¼ 9 Hz, and f 2 ¼ 7 Hz, we

successfully obtained phase images (C1 and C2), as shown
in Fig. 5. The fringe visibility is very good; besides, very
fine fringes can be observed on the left part of Figs. 5(a)
and 5(b).

From the obtained phase images (Fig. 5), we can
quantitatively measure the 2D deformation (Fig. 6). First,
the original phase images [Figs. 6(a) and 6(b)] were fil-
tered with the conventional 2D convolution method [see
Figs. 6(c) and 6(d)]. Then, they are 2D unwrapped to
get smooth phase images, and the displacements uy and

Fig. 3. Term cosðθ1 − θ2 þ a sin 2πf 1t − a sin 2πf 2tÞ represented
in the frequency domain with t ¼ 0 s, 1∕63 s; 2∕63 s; :::; 62∕63 s.
a is set to be 2.4048 rad, f 1 ¼ 9 Hz, and f 2 ¼ 7 Hz. Here, we
have arbitrarily set θ1 ¼ 0.2 rad, and θ2 ¼ 0.9 rad.

Fig. 4. Bending specimen (photo taken by a camera that is not
used in the experiments). By adjusting the micrometer screw,
different deformation states can be obtained. The white rectan-
gle represents the zone of interest.

Fig. 5. Phase images (without filtering) showing the displace-
ment field along the Y axis and X axis obtained with sinusoidal
phase modulations. A phase difference of 2π represents a dis-
placement difference of about 385 nm. The micrometer screw
advances 10 and 50 μm, respectively, along the Y axis. The gen-
eralized lock-in detection[9,11,12] is used to process data.
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ux [Figs. 6(e) and 6(f)] can be calculated by Eqs. (14) and
(15). The strains εy, εx , and γxy can be quantitatively mea-
sured [Figs. 6(g), 6(h), 6(i)] for any choice of origins for uy
and ux .
When applying linear/sawtooth phase modulations

described by Eqs. (7) and (8), similar fringes (see Fig. 7)
are obtained, since the modulation frequencies are quite
low (f 1 ¼ 9 Hz, and f 2 ¼ 7 Hz). However, the sawtooth
approach will become much less efficient at higher speeds.
There are some small differences in the fringe pattern,
which are mainly due to phase noise, initial phase adjust-
ment, and the fact that the loading processes were done
manually and are not perfectly reproducible.
Compared to previous reports of 2D in-plane displace-

ment field measurements, the proposed approach is much
simpler with only one laser and one camera; yet,
high-quality fringes have been obtained. A camera with
moderate speed (63 frames per second) is used; still, the
data acquisition time (1 s for 2D information) is even a
little advantageous over some commercialized systems
(e.g. 3.5 s for 3D information[8]). Obviously, this system
has the potential to be operated at a high speed while pro-
viding accurate results by using the sinusoidal phase

modulation together with a high-speed camera. Although
the relatively voluminous data may be a challenge for
lower-end computers to carry out real-time analysis, it
does not seem to be a problem for the future, since the
semiconductor industry is developing rapidly. Last but
not least, this approach has the potential to carry out
simultaneous ESPI measurements of the 3D displacement
field.

This work was financially supported by the ANRMicro-
morfing Program (ANR-14-CE07-0035), China Scholar-
ship Council (CSC), and the Labex Action.
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Fig. 6. From phase images to quantitative 2D strain field.
(a), (b) Unfiltered phase images (we took the central parts of
Figs. 5(c) and 5(d) as examples). (c), (d) Filtered phase images.
(e), (f) Displacements uy and ux . (g), (h) Normal strains εy and
εx . (i) Shear strain γxy.

Fig. 7. Phase images (without filtering) showing the displace-
ment field along the Y axis and X axis obtained with linear/
sawtooth phase modulations. A phase difference of 2π represents
a displacement difference of about 385 nm. The micrometer screw
advances 50 μm along theY axis. The lock-in detection[9] is used to
process data.
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