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Indefinite media with mixed signs of dielectric tensor elements possess unbounded equifrequency surfaces that
have been utilized for diverse applications such as superimaging, enhanced spontaneous emission, and thermal
radiation. One particularly interesting application of indefinite media is an optical cavity supporting anomalous
scaling laws. In this Letter, we show that by replacing an indefinite medium with magnetized plasma one can
construct a tunable indefinite cavity. The magnetized plasma model is based on realistic semiconductor material
properties at terahertz frequencies that show hyperbolic dispersion in a certain frequency regime. The hyperbolic
dispersion features are utilized for the design of optical cavities. Dramatically different sizes of cavities can
support the same resonance mode at the same frequency. For a cavity of fixed size, the anomalous scaling
law between the resonance frequency and mode number is confirmed. The resonance frequency can be strongly
modulated by changing the strength of the applied magnetic field. The proposed model provides active control-
lability of terahertz resonances on the deep subwavelength scale with realistic semiconductor materials.

OCIS codes: 350.4238, 350.5400, 160.3918.
doi: 10.3788/COL201816.050005.

Optical cavities possess the ability to confine optical
waves in a definite volume. They have attracted numerous
studies and facilitated various applications such as energy
harvesting, sensing, wavelength filtering, lasers, strong
light-matter interaction, cavity quantum electrodynam-
ics, wave chaos, and opto-mechanics[1–10]. For increasing
the energy density in the cavity and achieving stronger
light-matter interaction, higher quality factor and smaller
size are desired. Some novel schemes have been proposed
to achieve superior cavity performance, such as toroid-
shaped cavities, photonic crystal defect cavities, and
bound states in a continuum in photonic crystals[11–14].
Recently, indefinite media with hyperbolic dispersion

have drawn growing attention due to their applications
in superimaging, negative refraction, enhanced spontane-
ous emission, and thermal radiation[15–18]. Since the un-
bounded equal frequency surface (EFS) in indefinite
media enables wave propagation with very large wavevec-
tors, a cavity made of an indefinite medium can have a
significantly reduced mode volume compared to conven-
tional cavities. Interestingly, these cavities support
anomalous scaling laws, which have been demonstrated
by using hyperbolic metamaterials[19,20]. However, for
broader applications, it is highly desired to have tunable
optical cavities, whereas the metamaterial-based cavities
have a fixed optical response once fabricated. Here we pro-
pose a reconfigurable way for achieving indefinite cavities
by using magnetized plasma based on realistic semicon-
ductor properties, and we study the corresponding scaling
law governing the mode dispersion of such cavities.
Magnetized plasma has provided a platform for many

interesting types of physical phenomena such as subwave-
length imaging, chiral edge mode propagation, and

photonic Weyl degeneracy[21–23]. The magnetized plasma
considered here is based on a realistic semiconductor—
InSb (indium antimonide), under a magnetic field that
can be readily realized in experiments. Benefitting from
the extremely small effective mass of electrons in InSb,
a moderately high magnetic field can lead to a very large
cyclotron frequency that exceeds the plasma frequency,
resulting in dispersion sharing some similarity to that of
hyperbolic media. The EFS of magnetized InSb can be
dynamically controlled by tuning either the magnetic field
strength or the temperature, leading to a strong variation
of the dispersion of the cavity medium.

The electromagnetic properties of magnetized plasma
can be obtained by taking into account both the Drude
model and Lorentz force arising from the magnetic field.
For an applied magnetic field in the z direction, the elec-
tron motion along the z direction is not affected, and
therefore the permittivity component along the z direction
is still described by the Drude model. However, the motion
of electrons in the z and y directions is coupled to each
other by the Lorentz force, leading to the presence of
an off-diagonal element in the in-plane directions. The
permittivity tensor of magnetized plasma is given as ε1 iε2 0

−iε2 ε1 0
0 0 εP

!
;

with ε1 ¼ ε∞ − ε∞
ω2
pðω2þiγωÞ

ðω2þiγωÞ2−ω2ω2
c
, εP ¼ ε∞ − ε∞

ω2
p

ω2þiγω , and

ε2 ¼ ε∞
ωωcω

2
p

ðω2þiγωÞ2−ω2ω2
c
, where ωp is the plasma frequency,

ωc is the cyclotron frequency, and γ is the damping factor.
For an extremely strong magnetic field, i.e., the cyclotron
frequency approaches infinity, the permittivity tensor
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approaches that of an ideal hyperbolic medium, with

ε1 ≈ ε∞, εP ¼ ε∞ −
ε∞ω2

p

ω2þiγω , and ε2 ≈ 0. On the other hand,

for finite cyclotron frequencies, the propagation of a wave
along the z direction is not degenerate, leading to different
dispersions for left handed and right handed circular po-
larizations (LCPs and RCPs), and consequently a gap be-
tween the hyperbolic EFS and the elliptical one in the
momentum space.
We begin with a very strong magnetic field of 4 teslas

(T), which leads to a much larger cyclotron frequency
ωc∕2π ¼ 7.4 THz than the plasma frequency ωp∕2π ¼
0.5 THz and an approximate hyperbolic dispersion. The
dispersion can be rigorously calculated by solving the
Maxwell equations, which leads to the expression[21]

k2x þ k2y
k2z

¼ −
εPðk2 − εRÞðk2 − εLÞ
ε1ðk2 − εPÞðk2 − εX Þ

; (1)

where k2 ¼ k2x þ k2y þ k2z , εRðLÞ ¼ ε∞ − ε∞ω
2
p∕ðω2 ∓ω2

cÞ,
and εX ¼ εLεR∕ε1. For frequencies below the plasma fre-
quency, we can see that there are two branches of EFSs
in Fig. 1(a), an unbounded EFS showing hyperbolic fea-
tures and a closed surface. This is very similar to a typical
type I hyperbolic medium, with the exception that there
is a very tiny gap between the two EFSs due to the
magneto-optical effect that breaks down the degeneracy
between LCP and RCP along the z direction. When
the applied magnetic field is reduced to 0.4 T, the cyclo-
tron frequency is around 0.7 THz, which is slightly greater
than the plasma frequency. The resulting isosurface at
f ¼ 0.4 THz deviates significantly from that of hyperbolic
media, and there exists a much larger gap between the two
circularly polarized states.

Next, we consider a two-dimensional (2D) cavity made
from InSb under a magnetic field of 4 T along the z direc-
tion, as shown in Fig. 2(a). Since ωc ≫ ωp, by neglecting
the damping factor the isosurface is very close to that of a
hyperbolic medium, which is given by

k2z
ε∞

−
k2x þ k2y

ε∞ðω2
p − ω2Þ∕ω2 ¼ 1: (2)

By setting kx ¼ 0, we have the 2D dispersion curves
shown in Fig. 2(a). Each of the points on the dispersion
curve corresponds to a possible electromagnetic field pat-
tern. For simplicity, we first consider a perfect electric con-
ductor (PEC) boundary for the cavity where the tangential
component of the electric field vanishes. For a given fre-
quency, the cavity sizes (ly, lz) corresponding to a certain
resonance with mode order (m, n) are expressed as

ly ¼
mπc
kyω

; lz ¼
nπc
kzω

; (3)

where the subscript z is the direction along the applied
magnetic field, the subscript y is the direction perpen-
dicular to it, and n and m are the resonant mode orders
along the two directions, respectively.
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Fig. 1. EFS of magnetized plasma at f ¼ 0.4 THz, for
(a) B ¼ 4 T and (b) B ¼ 0.4 T. The magnetic field is along
the z direction and the parameters used in the calculation
are the plasma frequency ωp∕2π ¼ 0.5 THz, ε∞ ¼ 16, and
γ ¼ 5 × 1010 rad∕s.
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Fig. 2. (a) Top: 2D dispersion relation curve for f ¼ 0.4 THz on the kx ¼ 0 plane, and the selected wavevector value as marked on
the curve: ðky ; kzÞ ∈ fð3; 5.68Þ; ð4; 6.69Þ; ð5; 7.80Þ; ð6; 8.97Þ; ð7; 10.18Þg. Bottom: schematic of the 2D cavity array. (b) In-plane electric
field Ey distribution of the cavities at the resonance frequency with Ez incidence, the cavity sizes are from left to right
ðly ; lzÞ ∈ fð125; 66Þ; ð94; 56Þ; ð75; 48Þ; ð63; 42Þ; ð54; 37Þg μm, corresponding to the wavevector coordinate in (a); the resonant mode or-
ders used to determine the cavity sizes are ðm; nÞ ¼ ð1; 1Þ. (c) The transmission spectra of different cavities around the resonance
frequency corresponding to mode orders ðm;nÞ ¼ ð1; 1Þ.
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We first consider the dispersion relation for the case of
f ¼ 0.4 THz, which is below the plasma frequency, with
the magnetic field maintained at 4 T. For several points
taken from the hyperbolic band of the 2D EFSs, marked in
Fig. 2(a), we calculate the approximate cavity sizes based
on Eq. (3) for the mode orders ðm; nÞ ¼ ð1; 1Þ. To verify
the cavity resonance behavior, we simulate an array of
cavities periodically arranged along the z direction sur-
rounded by air, and the period is set as three times of
the cavity width lz . The incident terahertz wave has a
polarization along the z direction. The transmission spec-
tra are shown in Fig. 2(c), where we can see that all the
cavities of different sizes are resonant at approximately
the same frequency, as expected. As we can see, as the size
of cavities decreases, the absorption strength becomes
weaker due to the larger momentum mismatch between
the free space wave and the resonance mode in the cavity.
The profile of the y component of the electric field is shown
in Fig. 2(b) for each cavity size. From the figure, we can
easily identify the resonance mode order from the electric
field distribution as ðm; nÞ ¼ ð1; 1Þ, which is consistent
with what is used to calculate the cavity sizes. It can
be noted that the simulated resonance frequency slightly
deviates from the calculation based on Eq. (3), due to the
assumption of the PEC boundary condition when we
calculate the cavity sizes. In the simulation, the cavity
is placed in air and the wave can penetrate into the sur-
rounding medium.
Next, we fix the size of a cavity and investigate the

multiple resonance modes supported by the cavity under
a magnetic field of 4 T, where the dispersion is well de-
scribed by the hyperbolic expression in Eq. (2). For a fixed
size of cavity size (ly, lz), the allowed resonance frequencies
can be found by combining Eqs. (2) and (3), which leads to

ω2 ¼ c2

2ε∞

��
nπ
lz

�
2
þ
�
mπ

ly

�
2
þ ε∞

ω2
p

c2

�
−
1
2

�����������������������������������������������������������������������������������������������������������������
c2

ε∞

��
nπ
lz

�
2
þ
�
mπ

ly

�
2
þ ε∞

ω2
p

c2

��2

− 4
c2

ε∞

�
nπ
lz

�
2
ω2
p

s
: (4)

Using the above equation, we plot the dependence of
the resonance frequency on mode numbers in Fig. 3(a) and
3(b) for cavity sizes of P1 ¼ ð200 μm; 100 μmÞ and
P2 ¼ ð150 μm; 200 μmÞ, respectively. As shown in Fig. 3,
the frequency increases with mode number n along the z
direction but decreases with mode number m along
the y direction. Therefore, anomalous mode number/
frequency scaling laws exist for a magnetized plasma
cavity. To numerically verify the anomalous scaling prop-
erty, we put the corresponding cavities into a simulation.
The transmission spectra for each cavity are shown in
Figs. 3(c) and 3(d), and the field distributions for resonance
frequency from the spectra are shown in Figs. 3(e) and 3(f).
The transmission intensity difference in Fig. 3(c) for differ-
ent resonance orders can be attributed to the mismatch
between the free space wavelengths and the size of the
cavity. Specifically, the higher-order modes correspond to

lower frequencies (much longer free space wavelengths
compared to the cavity size), causing a weaker resonance.
There also is a significant difference in the quality factor

among different cavity modes, especially in Fig. 3(c).
The low quality factor in the (1, 1) mode in Fig. 3(c) is
mainly due to the large radiative coupling loss, which nicely
explains why it is more efficiently excited by the incident
wave than the higher-order modes. The resonance frequen-
cies are close to that calculated from Eq. (4), with a slight
difference, and their dependence on mode number is found
to fit well with the calculation. Thus, we have verified
the resonant orders and the diverse scaling laws. It is worth
noting that there are cases where certain cavity sizes may
support very different resonant modes at very similar
frequencies. This can be expected from the complex
dependence of the resonance frequency on the mode num-
bers m and n.

In comparison with hyperbolic metamaterials, magnet-
ized plasma has the advantage of dynamic tunability by
the strength and direction of the external magnetic field.
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Fig. 3. (a) Resonance frequency shift with increasing mode num-
ber m when n is set to 1 for a cavity size of P1ð200 μm; 100 μmÞ.
(b) The resonance frequency shift with n increasing and m is set
to 1 for a cavity size of P2ð150 μm; 200 μmÞ. (c) The transmis-
sion spectrum for the case of (a). (d) The transmission spectrum
for the case in (b). (e), (f) The configuration and the electric field
distribution of different resonance frequencies in (c) and (d), with
separate polarizations of Ey and Ez .
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Next, we explore the tunability of the magnetized plasma
cavity with varying magnitudes of the magnetic field. For
a fixed cavity of size ðly; lzÞ ¼ ð125 μm; 66 μmÞ, we inves-
tigate the electromagnetic response of the cavity for a
large range of magnetic fields between 0.2 to 4 T. With
a magnetic field above 1 T, the cyclotron frequency is sig-
nificantly higher than the plasma frequency, and conse-
quently it is expected that the dispersion of magnetized
plasma does not significantly deviate from that of a hyper-
bolic medium. As a result, the variation of the magnetic
field does not cause a prominent shift in the resonance fre-
quency, as shown in Fig. 4(a). However, for magnetic fields
below 1 T, the variation of the magnetic field leads to a
more dramatic change in the dispersion of the magnetized
plasma [Fig. 1(b)]. Hence, the resonance frequency expe-
riences a large shift from 0.33 THz to 0.19 THz when the
magnetic field is reduced from 0.5 T to 0.2 T. We
calculated the dependence of the resonance frequency of
the (1,1) mode over the magnetic field based on Eqs. (1)
and (3), with the results shown in Fig. 4(b). In compari-
son, we also performed the full wave simulation to find the
resonance frequency, which is represented by square sym-
bols in the plot. The analytical and simulation results
agree very well with each other, showing a large frequency
detuning range at smaller applied magnetic fields, while a
saturation for magnetic fields above 1 T.
In conclusion, we have proposed the idea of using mag-

netized plasma as a resonance cavity and theoretically
studied the resonating behavior of the cavity. Different
scaling laws are found for the resonant mode orders
along different directions. We found that the resonance

frequency of the proposed magnetized plasma cavity could
be readily tuned by changing the magnitude of the applied
magnetic field. As all the parameters are taken from real-
istic material systems, we expect that the proposed model
can find applications in the integrated optical system and
active terahertz devices.
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Fig. 4. (a) Transmission spectra for a fixed cavity size of
ðly ; lzÞ ¼ ð125 μm; 66 μmÞ under different magnetic field
strengths, with the same configuration as in Fig. 2. (b) The
dependence of the cavity resonance frequency over the magnetic
field for mode (1,1), where the solid line is calculated by using
Eqs. (1) and (3), and the squares are obtained from the full wave
simulation.
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