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Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical
pulses into a single output pulse, enabling high pulse energy and high average power. A Z -domain model target-
ing the pulsed laser is assembled to describe the optical interference process. An algorithm, extracting the cavity
phase and pulse phases from limited data, where only the pulse intensity is available, is developed to diagnose
optical cavity resonators. We also implement the algorithm on the cascaded system of multiple optical cavities,
achieving phase errors less than 1.0° (root mean square), which could ensure the stability of CPS.
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High average power lasers are essential tools for discovery
science and applications, such as laser-driven plasma
wakefield acceleration (LWFA) towards future tera-
electron-volt (TeV) colliders[1,2], and a megahertz (MHz)
pump–probe for modern X-ray free electron laser
(XFEL)[3]. The primary technical gaps between present
laser capabilities and the performance required for these
key applications include high average power of the
kilowatt (kW) range, high wall plug efficiency, and femto-
second precise pulse timing. Fiber laser systems show
promising high efficiency, excellent beam quality, and
stability[4], but are limited by pulse energy. Coherent pulse
stacking (CPS) is capable of conveniently adding large
numbers of pulses, enabling the extraction of all available
stored energy from a fiber amplifier while maintaining low
intensity to minimize nonlinear effects[5–8]. Integrating
CPS with spatial and spectral combining has the potential
to provide joule level pulse energy at a kilohertz (kHz) rep-
etition rate to bridge the technical gap[9–11].
CPS is a new time-domain coherent addition technique

that stacks several optical pulses into a single output
pulse. Coherent pulses are stacked in a traveling-wave res-
onant cavity (Gires–Tournois interferometer), which is
composed of a partially reflecting front mirror and several
completely reflecting beam-folding mirrors[12]. The initial
pulses of the tailored optical pulse burst enter the reflect-
ing resonant cavity and interfere destructively at the cav-
ity output port, thus storing optical energy inside the
resonant cavity. Later, the final pulse in the burst produ-
ces a constructive interference with the previous intra-
cavity pulses at the output port, so that all stored energy
is extracted from the resonant cavity into a single out-
put pulse.

The efficiency of the CPS system is related to the ability
to control the cavity round-trip phase accumulated by
optical pulses in each path in order to guarantee the con-
structive interference. The round-trip phase of each cavity
is stabilized against environmental perturbations and ad-
justed for a prescribed phase value by proper feedback
control of a piezo-driven mirror. Failure of maintaining
the cavity phase matching translates into a decrease of
the stacking efficiency and combined peak power.

In this Letter, we proposed an algorithm in the Z do-
main to extract the cavity phase and pulse phases from
limited data. Instead of phase stabilization techniques
depending on a single detector at the system output,
such as the hill-climbing algorithm [stochastic parallel
gradient descent (SPGD)][13] and the dithering method
[locking of optical coherence via single-detector electronic-
frequency tagging(LOCSET)][14], we use all of the avail-
able information from the optical system and calculate
the individual round-trip phase for each cavity accurately.
Compared with the pulse-pattern-based cavity phase
detection algorithm[15,16], the technique reported here
eliminates the time-consuming calibration procedure (to
obtain template vectors for each cavity). This pattern-free
phase detection algorithm can scale to large numbers of
pulses without slowing the control system.

To diagnose an optical cavity resonator, one has to de-
rive the cavity phase from limited measurements provided
by the corresponding photodiode, where only the intensity
is available. This can be treated as a gray box model,
which combines a partial theoretical structure with data
to complete the model. We have developed a control
system model describing the optical interference process
in the Z domain, which gives a direct link to digital
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radio frequency (RF) engineering and provides solutions
to deterministic optical phase measurement and scalable
feedback control.
If the round-trip length is L, the cavity round-trip

optical phase shift is φ ¼ 2πL∕λ0, where λ0 is the optical
wavelength. Z transform is employed to describe the first-
order physics of a front mirror as a beam combiner/
splitter, as shown in Fig. 1. We can express the delay line
in the context of a pulsed laser as

~O4 ¼ r ~W 1 þ it ~W 2; (1a)

~O3 ¼ it ~W 1 þ r ~W 2; (1b)

~W 2 ¼ z−1αeiφ ~O3; (1c)

where ( ~W 1, ~W 2) and ( ~O3, ~O4) are input and output pulse
electric fields, respectively. Here, r and t are reflection and
transmission coefficients, which are related by r2 þ t2 ¼ 1.
The unit delay z−1 means that the circulating pulse travels
in the cavity for a round-trip[16]. Assuming that the cavity
is lossless and there is no additional loss due to imperfect
interference, transmission loss coefficient α is 1. We call
the round-trip phase φ the “cavity phase”, which is linear
with the cavity round-trip length and should be fixed
within a small fraction of the optical wavelength against
environmental perturbations by the feedback control.
The system transfer function HðzÞ is therefore

HðzÞ ¼ Y ðzÞ
XðzÞ ¼

r − αeiφz−1

1− rαeiφz−1 ; (2)

where HðzÞ is the linear mapping of the Z transform of the
input XðzÞ to the Z transform of the output Y ðzÞ. The
coherent pulse stacker acts as a digital filter, which is char-
acterized by the cavity phase φ and the front-mirror reflec-
tivity r. The Z -domain model can be extended to cascaded
cavities as easily as

H cascadedðzÞ ¼
Y
m

HmðzÞ: (3)

For an ultrashort optical pulse train consisting of n
pulses, we define the complex field of the kth individual
pulse as Ak·eiψk , where Ak and ψ k characterize the am-
plitude and phase. Instead of using the stack pulse train
itself, a special probe pulse train can be injected together
with the stack pulse train to diagnose the optical cavity
fluctuation and lock the cavity phase according to the de-
scribed cavity Z -domain model. Pulses are sampled with a
fast photodiode, and the phase probe pulse train is
triggered accordingly; then, the peak of each pulse is
searched in the photodiode trace for further processing.
Let us denote the input of the probe pulse train
as xðkÞ ¼ inAk·ei

inψk , while the output is yðkÞ ¼
outAk·ei

outψk . Taking the Z transform of the input and out-
put pulse trains, respectively, yields

XðzÞ ¼
Xn
k¼1

in

Ak·ei
inψk·z−ðk−1Þ; (4)

and

Y ðzÞ ¼
Xn
k¼1

out

Ak·ei
outψk·z−ðk−1Þ: (5)

Combining Eqs. (2), (4), and (5) and rearranging these
equations result in

ðr − αeiφz−1Þ
Xn
k¼1

in

Ak·ei
inψk·z−ðk−1Þ

¼ ð1− rαeiφz−1Þ
Xn
k¼1

out

Ak·ei
outψk·z−ðk−1Þ:

ð6Þ

Expanding polynomials in terms of z and equating co-
efficients of variables with the same order on both sides in
Eq. (6) give us

8>>>>>>>>>><
>>>>>>>>>>:

r·inA1·ei
inψ1 ¼ outA1·ei

outψ1

−αeiφ·inA1·ei
inψ1 þ r·inA2·ei

inψ2 ¼ outA2·ei
outψ2 − αeiφ·r·outA1·ei

outψ1

..

.

−αeiφ·inAk−1·ei
inψk−1 þ r·inAk·ei

inψk ¼ outAk·ei
outψk − αeiφ·r·outAk−1·ei

outψk−1

..

.

−αeiφ·inAn−1·ei
inψn−1 þ r·inAn·ei

inψn ¼ outAn·ei
outψn − αeiφ·r·outAn−1·ei

outψn−1

inAn·ei
inψn ¼ r·outAn·ei

outψn :

ð7Þ

Fig. 1. Physical model of pulse interference in the Z domain.
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For the general term formula of Eq. (7), collecting the
same index pulse term on one side leads to

αeiφðr·outAk−1·ei
outψk−1 − inAk−1·ei

inψk−1Þ
¼ outAk·ei

outψk − r·inAk·ei
inψk :

ð8Þ

After taking the absolute value on both sides of Eq. (8),
the phase of the output pulse can be derived from

outψ k ¼ inψk � arccos
�
r2·inA2

k þ outA2
k − α2·inA2

k−1 − α2·r2·outA2
k−1 þ 2α2r·inAk−1·outAk−1· cosðinψk−1 −

outψk−1Þ
2r·inAk·outAk

�
: (9)

Since the amplitude inAk and the phase inψk are input
parameters, they can be treated as known variables.
Pulses out of the cavity could be detected by a photodiode,
which directly measures the pulse power, so one can get
the pulse amplitude value from those power data. Given
the parameters of inAk , inψk , and outAk , the phase of out-
put pulse outψk can be extracted from Eq. (9) if we have
obtained the information of the ðk − 1Þth pulse. Solving
the cavity phase φ in Eq. (8), we conclude that

φ ¼ arg
� outAk·ei

outψk − r·inAk·ei
inψk

αðr·outAk−1·ei
outψk−1 − inAk−1·ei

inψk−1Þ

�
; (10)

where arg is a function giving the argument of a complex
number. Equations (9) and (10) are basic formulas that
extract the cavity and pulse phases from limited data.
More concretely, we calculate every output pulse phase

outψk iteratively from the first to the last equation in
Eq. (7). Observing that cosine is an even function, generally
we will find two solutions of outψ k from Eq. (9). According
to Eq. (10), every iteration will generate a solution set con-
sisting of four values of the cavity phase, which can be de-
fined as a “vector” (φk1, φk2, φk3, φk4). Fortunately, we can
compare the solutions of the cavity phase provided by dif-
ferent iterations. The most likely value of the cavity phase is

supposed to be one of the four candidates in every iteration,
while the other three candidates (the least likely cavity
phases) are extraneous solutions to Eq. (7). The probe pulse
train should contain three or more pulses, which give us at
least two vectors of cavity phases for comparison.

In the actual experiment, thermal drift, acoustic pertur-
bation, mechanical vibration, and photodiode electronic
noise will affect the calculation of the cavity phase. Since

noise leads to the fluctuation of the calculated cavity phase,
we introduce the definition of “distance” between two “cav-
ity phase points” generated from two different iterations as

δka;lb ¼ minðjφka − φlbj; 2π − jφka − φlbjÞ; (11)

where k, l ∈ f1; 2;…; ng, k ≠ l, and a, b ∈ f1; 2; 3; 4g. In
general, the most likely cavity phase points have the

Fig. 2. Distance between cavity phase points.

Fig. 3. (a) Four vectors (green or orange) are chosen randomly
to extract the most likely cavity phase. The theoretical cavity
phase (red) is 0 rad. (b) Histogram of all cavity phase candidates.
The phase interval is 1.0°.
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shortest distance to each other than the least likely cavity
phase points. The distance definition within one cycle in ra-
dians can be treated as a “circular distance” shown in Fig. 2.
The impulse noise from one single pulse measurement

will introduce the random error to our calculation. Imple-
menting the random traversal in n vectors and using four
vectors stochastically each time can mitigate the effect, as
shown in Fig. 3(a). Counting the number of cavity phase
candidates within a certain interval gives us a histogram,
as shown in Fig. 3(b). The histogram indicates the distri-
bution of all cavity phase candidates, and it illustrates
that the most likely cavity phases from each iteration
are located in the interval of the theoretical cavity phase
and isolated from the least likely cavity phases. Since four
vectors are chosen randomly to derive the most likely cav-
ity phase, we define the distance among cavity phase
points from four different vectors as

δ ¼ δka;lb þ δka;pc þ δka;qd þ δlb;pc þ δlb;qd þ δpc;qd; (12)

where k, l, p, q ∈ f1; 2;…; ng, k, l, p, q are not equal to each
other, and a, b, c, d ∈ f1; 2; 3; 4g. Considering four vectors
with four candidates in each vector, there will be 256
(4 × 4 × 4 × 4) distance values. If we could find the mini-
mum from the 256 distance values, the corresponding cav-
ity phase points are the most likely values of the cavity
phases. Furthermore, phase unwrapping of the 2π comple-
ment has to be included in the calculation when dealing
with the cavity phase near the boundary of �π. It is im-
portant to know that one can get the right pulse phase
based on the one-to-one mapping between the pulse phase
and the cavity phase in each iteration.

Based on the iteration formulas, we simulated the proc-
ess of the CPS and extracted the cavity phase accurately
from limited data accompanied by noise. In the actual
experiment, low optical power levels require amplified
and high-speed photodiodes that produce electronic noise.
The simulation result shown in Fig. 4(a) is a pure system
without noise in order to demonstrate the correctness of
our algorithm, while the result shown in Fig. 4(b) implies
the actual system with 1.0% power level noise. Stochastic
values are applied to the input pulse amplitude and the
input pulse phase for noise reduction. Averaging is also
implemented in the calculation after extracting the most
likely cavity phase values from each iteration. A simple
initial calibration of the photodiode is needed beforehand
to mitigate the nonlinearity.

Fig. 4. Simulation results. The probe pulse train consists of 41
pulses. The cavity phase calculation needs 40 iterations. (a) Pure
system without noise. (b) Actual system with 1.0% power level
noise.

Fig. 5. Scanning the theoretical cavity phase over one cycle and
extracting the most likely cavity phase accordingly. (a) Pure sys-
tem without noise. (b) Actual system with 1.0% power level noise.
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As shown in Fig. 5, applying a ramp of theoretical cav-
ity phase from −π to π and extracting the resulting cavity
phase illustrate that the algorithm is linear and isotropic
in one phase cycle.
It is necessary to note that the output pulse train of

the previous cavity can be used as the input pulse train
of the next cavity. Properly cascading multiple optical
cavities will achieve a high peak-power enhancement.
Since the cavity phase and output pulse phases in one sin-
gle optical cavity can be obtained completely according to
the described algorithm, we can definitely extract all of the
phase information (cavity phase and pulse phase) cavity
by cavity with pulse amplitude data provided by photo-
diodes in the cascaded system of multiple cavities. We

have implemented the described algorithm on a three-
cavity system and simulated the calculation loop for
500 times. As shown in Fig. 6, cavity phases are extracted
accurately with errors less than 1.0° [root mean square
(RMS)] at 1.0% power level noise.

In conclusion, we have assembled a Z -transform model
describing the optical interference process and an algorithm
extracting the cavity phase and pulse phases from limited
measurements, where only the intensity is available. We
also have implemented the algorithm on the cascaded sys-
tem of multiple optical cavities, achieving phase errors less
than 1.0° (RMS). A simple initial calibration mitigating the
photodiode nonlinearity is a necessary procedure before ap-
plying the algorithm to actual experiments.
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Fig. 6. Errors of extracted cavity phases in a three-cavity sys-
tem. (a) Cavity phase error is 0.7° (RMS) in the first cavity.
(b) Cavity phase error is 0.8° (RMS) in the second cavity.
(c) Cavity phase error is 0.9° (RMS) in the third cavity.
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