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We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus
by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combi-
nation of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a
phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage
can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D
optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling
algorithm to a double-ring shaped radially and azimuthally polarized beam.
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Optical cage is a specific kind of optical field that has a
dark region surrounded by higher intensity. Owing to its
intriguing distribution, an optical cage can be applicable
to a multitude of areas, such as optical trapping and
manipulation™ and optical imaging™. Consequently,
the generation of an optical cage has attracted much at-
tention from researchers. Kozawa and Sato generated an
optical cage from a double-ring radially polarized beam™Y.
Chen and Cai produced a controllable optical cage by
focusing a Laguerre-Gaussian correlated Schell-mode
beam™. The above two techniques can produce omnly
nonuniform optical cages. To improve the uniformity of
the optical cage, Zhang applied a helical phase plate
onto double-ring radially polarized beams™?. Bokor and
Davidson used two counter-propagating radially polarized
Laguerre-Gaussian beams to realize a hollow dark spheri-
cal spot enclosed by relatively uniform optical barrier?,
but this method required a sophisticated focusing system
and elaborate optical alignment. Wang et al. proposed to
modulate the polarization state of the incident beam to
produce a uniform optical cage in the focused field. How-
ever, all of the researches mentioned above are limited to a
single optical cage. Guo et al. designed a complex pupil
filter for the incident Laguerre-Gaussian beams to realize
multiple optical cages along the optical axis®. Weng et al.
proposed a polarization steering method for generating
multiple optical cages either in the transverse plane
or along the optical axis'W. Naturally, the generation of
a three-dimensional (3D) array of optical cages with arbi-
trary spacing between them becomes appealing but still
remains a challenge to date. In this work, we present a
method to generate a 3D optical cage array with good uni-
formity in the vicinity of focus from vector beams carry-
ing radial and azimuthal polarizations, respectively, in
their two concentric zones of cross-section. The proposed
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scheme is capable of tailoring the shape of cages, as well as
the structure of multiple cages, and is validated by
numerical simulation.

Our work is first focused on how to combine the radial
and azimuthal polarizations in double-ring modes of inci-
dent light to produce a dark focal region surrounded with
uniform optical barriers. Then, we explore the possibility
of tailoring the intensity distribution at the vicinity of the
focus by appropriately adjusting the parameters of the
double-ring mode and the axial shifting factor. Finally,
we apply the shift theorem of Fourier transform and
the macro-pixel sampling algorithm to a double-ring
shaped radially and azimuthally polarized beam with
the aim at generating multiple 3D optical cages.

It is known that tightly focusing an azimuthally polar-
ized beam can create a dark field at the focus with higher
intensity in the transverse direction than in the axial di-
rection™. In contrast, focusing a radially polarized beam
can produce a strong longitudinal electric field along the
optical axis®. Our idea is to purposely split the field
contributed from the radially polarized part of incident
double-ring-mode light along the axial direction so that
it combines with the contribution of the azimuthally
polarized part to yield a 3D dark focus. To accomplish
this, we impose on the radially polarized part a phase
modulation factor expressed by

Tl = eXp{i angle[exp(ikzzd) =+ eXp(*ikzzd)]}v (1)

where angle means to take the argument of the complex
function, and k, is the z-directional component of the
wave vector. According to the shift theorem of Fourier
transform, this phase factor will induce double axial shifts
of z4 and z4 in the far-field space (or focal volume).
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Fig. 1. Polarization state of the double-mode vector beam.

Figure 1 is the polarization distribution pattern of
a double-mode vector beam. The electric field of this
incident beam can be expressed in a Cartesian coordinate
system as

Ein(x, Y, z) = { T\E, tpy<r=<pg @)

E, 0<r<ipy’

where E,. and E(p represent the radial and azimuthal po-
larized field in the input plane, respectively, p, is the
beam’s maximum radius that is determined by the
entrance pupil of the objective lens used here, and ¢ is
the ratio of the inner mode to the outer mode in the
radius.

The focusing process through an aplanatic lens is sche-
matically illustrated in Fig. 2. The electric field E in the
vicinity of focus can be calculated by the vectorial diffrac-
tion integral?2, which can be further simplified in the
sense of the Fourier transform; the focal field at the point
(7, y, z) with respect to the focus can be expressed? as

E(w,y,2) = FT{E/(z, y, 2) ™/ cos 0}, (3)
where a multiplicative constant factor has been dropped
for clarification. E’t is the field in the exit aperture of the
focusing lens. FT{ - } denotes the two-dimensional (2D)
Fourier transform. The exit field E, in Eq. (3) can be ex-
pressed by the incident field E‘m in the transformation
form®2,

Et(‘% Y, Z) = lﬂ(e) vV COS HMTQEin(xv Y, Z)a (4)
where [((0) is the relative amplitude of the electric field of
the incident beam at a pupil plane. M is the transforma-
tion matrix of the lens, taking the following form:
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Fig. 2. Schematic of the focusing system.
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In Eq. (4), T, is a specific phase factor needed to impose
on the incident beam for generating multiple optical cages,
which will be explained in detail later. For the single op-
tical cage, we just set Ty = 1.

In this Letter, the incident field profile is assumed to be
Gaussian, and, hence, the relative amplitude can be ex-
pressed as

(6)

() = {exp[—ﬂo(sine/ sina)?] 0<r<p
0 otherwise ’
where f is the ratio of the pupil radius to the beam waist,
and a = arcsin(NA/n) is the maximum value of 6 with n
denoting the refractive index in the exit space and depends
on the numerical aperture (NA) of the objective. In the
following simulation, we will set NA = 0.8.

In the first simulation example, we choose p, = 1.12,
zq = 34 (4= 0.532 pm denoting the wavelength of light),
and ¢ = 0.6. Figure 3 draws the calculated results of in-
tensity distributions of each component. Since the focus-
ing configuration has cylindrical symmetry, hereinafter,
we plot only the distribution in the z-z plane, unless stated
otherwise. For all of the calculations in this Letter,
the length unit is normalized to wavelength 4. As shown
in Fig. 3(a), the intensity of the transverse component
|E,|* + |E,|* on the optical axis is null at any z position.
However, it is noted in Fig. 3(b) that the longitudinal com-
ponent gives rise to two symmetrical bright spots on the
optical axis sandwiching a dark region. Figure 3(c) gives
the total intensity distribution obtained by a summation
of the distributions in Figs. 3(a) and 3(b). Figure 3(d)
presents the normalized profile of total intensity along
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Fig. 3. Calculated intensity distributions of in the z-z plane with
setting parameters fy = 1.12, z; = 34, and ¢t = 0.6. (a) Inten-
sity of transverse component |E,|? + |E,|?, (b) intensity of longi-
tudinal component |E,|?, (c) total intensity distribution,
(d) normalized intensity profile along the z and = axes [marked
n (c) by the red and white dotted lines, respectively].
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the z axis and z axis (marked respectively in Fig. 3(c) by
the red and white dashed lines), where the red solid line
and blue dotted line stand for the total intensity distribu-
tion along the z axis and x axis, respectively. They have
the same maximum intensity and similar intensity distri-
bution. Figure 3 shows that the optical cage surrounded
uniformly by light in the transverse and longitudinal di-
rections has been achieved by using our method. The size
of the optical cage can be defined by the dimension of a
bright barrier spanning along the transverse and axial di-
rections. As shown in Fig. 3(d), the dimensions of 5.54
along the z axis and of 1.54 in the focal plane are obtained,
respectively.

Then, we explore the tunability of the optical cage gen-
erated by our method. In fact, we will see in the following
examples shown in Fig. 4 that the intensity distribution of
the optical cage barrier can be accurately tuned by adjust-
ing the parameters of the ratio ¢ of the inner mode to the
outer mode in the radius, the distance of axial shift z,;, and
the ratio f of the pupil radius to the beam waist.

Figure 4 shows the total intensity distributions in
the z-z plane in the vicinity of focus for the incident
beams with different parameters. The incident beams
yielding Figs. 4(a) and 4(b) are the same in f; = 1.12,
and z; = 34, but differ in the radius of the inner and outer
modes by setting ¢ = 0.3, and ¢t = 0.8, respectively. We
can see that the increase of the ratio ¢ (=inner-mode
radius/outer-mode radius) gives rise to the higher optical
barrier in the radial direction than in the axial direction.
This phenomenon is ascribed to the fact that increasing
the ratio ¢ will enlarge the relative area of azimuthal
polarization, which contributes more to the transverse
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Fig. 4. Calculated intensity distributions with different
parameters in the z-z plane. (a),(b) The same z; = 34 and
po = 1.12, but different ¢ = 0.3, and ¢ = 0.8, respectively;
(¢),(d) The same z;, = 34, and ¢= 0.6, but different
By = 1.6, and py = 0.7, respectively; (e),(f) The same
t = 0.55, and fy = 1.5, but different z; = 4, and z; = 54,
respectively.

component in the focal field. Figures 4(c) and 4(d) show
the total intensity distributions with the same z; = 34,
and ¢ = 0.6, but with different g, = 1.6, and f; = 0.7, re-
spectively. This result indicates that the smaller the radius
ratio ff; between the pupil and beam waist, the higher the
optical barrier in the axial direction than in the radial
direction. This result is owing to the fact that the smaller
Py is, the stronger the outer part of the incident field is
relatively, giving rise to a stronger radial polarization of in-
cident light. Figures 4(e) and 4(f) demonstrate the perfor-
mance of adjusting the parameter z, in the 7' function.
The focal intensity distributions with the depth of 4.24
and 10.44 are produced, respectively, for z; = 11 and
24 = 5, with the same ¢ = 0.55, and f, = 1.5. We can
see that the increase of z,; enables the increasing depth
of the optical cage, which is just due to the axial shifting
role of z;. The demonstration in Fig. 4 confirms that the
intensity distribution of the optical cage can be flexibly
configured by appropriately adjusting the parameters of
double-mode incident beams.

Increasing the number of optical cages can further facili-
tate applications of such a special optical field. The 3D
array of optical cages is of special interest to us. Here,
in order to realize the 3D optical cage array, we again
apply the shift theorem of Fourier transform to the
above-discussed single-cage beams. For this purpose, let
the phase factor T take the following form:

Ty = exp[—i(k, Az + k, Ay + k,A2)], (7)

where Az, Ay, and Az are the desired shift distance of the
focal spot in the z, y, and z directions, respectively. For
creating an array with N cages, we use the macro-pixel
sampling method®%); each macro-pixel is composed of
N sub-pixels having a respective phase value ¢p; = k,Az; +
k,Ay; + k,Az; with j = 1,2, ..., N. In each macro-pixel, the
phase value ¢; responsible for the jth cage is randomly as-
signed to one of the N sub-pixels; in other words, the
sub-pixel carrying ¢; has a different relative position with
respect to the macro-pixel center for the mth and nth
macro-pixels. The aperiodic arrangement of the phase
value ¢; can avoid the periodic repetition of the entire
cage array.

The left column in Fig. 5 shows a designed 3D array of
multiple optical cages, distributed in two transverse
planes, which are located, respectively, at +154 and
—154 away from the focal plane, and each of which has
five cages. Figure 5(a) shows the total energy density in
the transverse plane at z = +154. Note that the trans-
verse plane at z = —154 has the same distribution as
Fig. 5(a). The corresponding field intensity distributions
in the longitudinal planes at = +15.64 (marked by the
red dashed line) and at = —15.64 (marked by the white
dashed line) are shown in Figs. 5(b) and 5(c), respectively.
Parameters for the left panels in Fig. 5 are chosen as
Po =112, 2z, = 34, and ¢t = 0.6, which are responsible
for the shape of the cage. The array-like behavior of cages
is controlled by setting parameters (Az, Ay, Az) in Eq. (7)
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Fig. 5. Intensity distributions of multiple 3D optical cages gen-
erated in the focal volume. Left column: five cages in each of
two transverse planes located, respectively, at z = +154 and
z = —154; (a) intensity distribution in the transverse plane at
z = 4154, (b) intensity distribution in the longitudinal plane
at = +15.61, (c) intensity distribution in the longitudinal
plane at x = —15.64. Right column: 2 x 1 optical cages in
each of four transverse planes at z = 454, 151, —154, and
—454; (d) intensity distribution in the transverse plane at
z = +154; (e) intensity distribution in the longitudinal plane
at y = 0; (f) intensity distribution in the longitudinal plane at
T = +13.84.

as Az = Ay = +£15.64, and Az = £154. The right column
in Fig. 5 exhibits the total energy density of multiple 3D
optical cages; four transverse planes at z = 451, 154, —154,
and —454 in the focal volume are assigned an array of
2 x 1 optical cages in each plane. Figure 5(d) presents
the intensity in one of the four transverse planes
(z = 4+154). The corresponding field intensity distributions
in longitudinal planes at y = 0 [marked by the white
dashed line in Fig. 5(d)] and at = +13.84 (marked by
the red dashed line) are shown in Figs. 5(e) and 5(f), respec-
tively. The parameters for the right panels in Fig. 5 are
chosen as f,= 1.12, z; = 34, t= 0.6, Az = +13.84,
Ay =0, Az =415, and Az = +451.

In conclusion, we have proposed a method to produce
the 3D optical cage with a uniform barrier from a
double-ring shaped radially and azimuthally polarized
beam. The shape of the optical cage can be configured
by appropriately adjusting the parameters of the

double-ring-mode beam. 3D arrays of multiple optical
cages are generated by applying the Fourier shifting prop-
erty to the macro-pixel sampling of a double-ring shaped
radially and azimuthally polarized beam. Simulation
shows that the proposed principle for tailoring the struc-
ture and shape of optical cages is simple and flexible. Be-
cause the required incident beams for producing such
specific focal cages can be realized by using techniques
for generating a vector optical field?, our method could
facilitate applications involving vector beams, such as fo-
cus shaping and optical tweezers.
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