
High-harmonic-generation-inspired preparation
of optical vortex arrays with arbitrary-order

topological charges

Wuhong Zhang (张武虹) and Lixiang Chen (陈理想)*

Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
*Corresponding author: chenlx@xmu.edu.cn

Received November 5, 2017; accepted January 12, 2018; posted online March 6, 2018

In the process of high-harmonic generation with a Laguerre-Gaussian (LG) mode, it was well established that the
topological charge could be of an N -fold increase due to angular momentum conservation. Here, by mimicking
the effect of high-harmonic generation, we devise a simple algorithm to generate optical vortex arrays carrying
arbitrary topological charges with a single phase-only spatial light modulator. By initially preparing a coaxial
superposition of suitable low-order LGmodes, we demonstrate experimentally that the topological charges of the
embedded vortices can be multiplied and transformed into arbitrarily high orders on demand, while the array
structure remains unchanged. Our algorithm offers a concise way to efficiently manipulate the structured light
beams and holds promise in optical micromanipulation and remote sensing.
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An optical vortex possesses a phase singularity, and the
optical energy flows around the singular point. The optical
vortex is also connected to the orbital angular momentum
(OAM) of light, whose helical phasefront is described by
expðilϕÞ, where ϕ is the azimuthal angle, and lℏ is the
OAM carried per photon[1]. Generally, the topological
charge of a vortex filed is defined as Q ¼ ð2πÞ−1

H
C dχ,

where χ describes the phase distribution, and C is an ar-
bitrary circuit enclosing the singular point[2]. The optical
vortices as well as light’s OAM have been extensively ex-
plored for a variety of interesting applications, including
optical tweezers and spanners[3], spatial mode multiplexing
in optical communications[4], optical sensing[5] and metrol-
ogy[6], and high-dimensional quantum information proto-
cols[7]. Besides, the OAM content of an optical vortex
array[8] and the nonlinear propagation of an array of sin-
gularities were investigated[9]. Also, optical vortex arrays
have been applied to assembling fluid-borne colloidal
spheres into rapidly circulating rings so that the generat-
ing fluid flows with pinpoint control[10]. More recently, we
also demonstrated a high-efficiency scheme of detecting
the arrayed optical vortices even hidden in an ultra-weak
background[11].
As a reliable method to generate optical vortex arrays,

the computer-generated holograms, acting as diffractive
optical elements, have been widely used in dynamic holo-
graphic optical tweezers[12]. A single collimated laser beam
can be easily split into several separated beams with op-
tical vortices by utilizing a spatial light modulator
(SLM)[13,14]. Besides, some other special instrumentation
can also be used to produce optical vortex arrays, for ex-
ample, a thin-slice solid-state laser[15], a π∕2 cylindrical lens
mode converter[16], a mode selective coupler[17], and a single
topological defect in a nematic liquid crystal mesophase[18].
By interfering with three or more plane or spherical waves,

it is demonstrated that the vortex arrays can be easily
produced and controlled[19–21]. Based on the coaxial super-
position of Laguerre-Gaussian (LG) modes instead of
plane waves, interesting structures of optical singularities
are also reported[22], and its diffraction theory is also
analyzed[23].

However, the topological charges of a vortex array pro-
duced by the interference scheme are generally of low or-
ders, and the LG mode coaxial superposition method has
not been fully exploited[19–22]. Here, we use suitable LG
mode superposition as the initial optical vortex arrays,
and then we devise a simple yet effective mathematical
algorithm that can multiply these vortices into arbitrary
orders, while the array structure remains unchanged. Our
approach is inspired by the nonlinear optical effect of high-
harmonic generation, where the topological charge of an
input LGmode is multiplied spontaneously due to angular
momentum conservation. Besides, the algorithm also pro-
vides a quantitative way to define the component and co-
efficient of each LG mode involved in the formation of
vortex arrays, such that one may directly use an LG beam
laser instead of using the SLM to produce high-power op-
tical vortex arrays on demand. We emphasize that in this
Letter we just mimic this nonlinear optical effect in math-
ematics to devise and show our algorithm rather than us-
ing the real crystal to perform the N-order harmonic
generation effect. In our experiment demonstration, the
desired holographic gratings loaded in a single phase-only
SLM can be utilized to produce vortex arrays carrying
tunable high-order topological charges on demand. We
generate vortex arrays of triangle, circular, and chess-
board structures that carry high-order topological charges
to demonstrate the validity of the algorithm. We antici-
pate that our scheme may find direct applications in
the realm of optical micromanipulation.
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As a natural choice for describing an optical vortex car-
rying OAM, an LG mode can be written mathematically in
the cylindrical coordinate ðρ;φÞ at the beam waist plane as

LGl
pðρ;ϕÞ ¼ Rl

pðρÞ expðilϕÞ; (1)

and

Rl
pðρÞ ¼ Ap;l
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where ω is the beam waist, Ap;l is the normalized constant,
Ljlj
p ð•Þ is the generalized Laguerre polynomial, and Rl

pðρÞ
describes the radial intensity distribution, while expðilϕÞ
denotes the helical phase structure with p and l being
the radial and azimuthal mode indices, respectively. In
the process of high-harmonic generation, we assume the in-
put fundamental wave is an optical vortex beam,
E1ðρ;ϕÞ ¼ A1ðρÞ expðilϕÞ. Under both slowly varying
envelope approximation and small signal approximation,
we know the output N-order high-harmonic wave could
be described by[24]

EN ðρ;ϕÞ ¼ η½E1ðρ;ϕÞ�N ¼ ηAN
1 ðρÞ expðiNlϕÞ; (3)

where η is a constant related to the conversion efficiency in
the high-harmonic process. Besides, one can see clearly that
the topological charge is multiplied, having an N-fold in-
crease, as a consequence of the law of angular momentum
conservation. A more simple and intuitive example is the
second-harmonic generation (SHG), in which an LG mode
of an azimuthal index l will end up with a doubled fre-
quency and a doubled topological charge 2l[25,26]. Recently,
an interesting interference phenomenon was also observed
in SHG, where a specific superposition of two LG modes of
opposite signs served as the input fundamental wave in-
stead of a single LG mode[27,28]. In this case, the resultant
SHG light field can be described as E2ðρ;ϕÞ ¼
η½LGþl

p ðρ;ϕÞ þ LG−l
p ðρ;ϕÞ�2. Along this line, we can put

Eq. (3) in a more general framework with the input light
field being an arbitrary superposition of different LG
modes, namely,

EN ðρ;ϕÞ ¼
"X

l;p

al;pLGl
pðρ;ϕÞ

#
N

; (4)

where al;p denotes the complex amplitude of the constitu-
ent LGmodes, and η is trivially discarded. As is inspired by
Eq. (4), here we mimic the high-harmonic-generation
mechanism to devise an algorithm to prepare optical vortex
arrays carrying arbitrarily high-order topological charges
with a single SLM. The incident light beams on the
SLM are merely fundamental Gaussian ones. Based on
the phase holograms prepared by our mathematical codes,
we can use the SLM to tune the topological charges of the
vortices embedded in a static array. Our algorithm is illus-
trated by Fig. 1(a). We restrict our attention to those

superposition LG modes with p ¼ 0, namely, those modes
with a single bright annular ring and on-axis zero intensity.

According to the previous study[22], the original light
fields E1ðρ;ϕÞ in the form of a vortex array carrying
low-order topological charges can be produced by super-
posing a set of suitable LG modes, namely, E1ðρ;ϕÞ ¼P

l alLG
l
p¼0ðρ;ϕÞ. Mathematically, we are allowed to re-

write the vortex field as E1ðρ;ϕÞ ¼ jE1ðρ;ϕÞj exp½iχðρ;ϕÞ�,
which can be equivalently represented by an intensity ma-
trix jE1ðρ;ϕÞj and a phase matrix χðρ;ϕÞ. In order to make
distinct vortices in the bright background, we only extract
the information of the phase matrix and replace the inten-
sity matrix by a uniform intensity. Under this configura-
tion and based on Eq. (3), we know that the resultant
vortex field will become EN ðρ;ϕÞ ∝ exp½iNχðρ;ϕÞ�.
Then, the topological charge of each vortex embedded
in the light field will be increased by N times as
Q0 ¼ ð2πÞ−1

H
C dðNχÞ ¼ NQ. Then, we add the phase

profile to the blazing grating and obtain the desired holo-
grams that are displayed subsequently on the SLM. This is
different from the previous work of preparing single high-
order OAM beams, since it just uses single LG modes and
cannot generate the high-order vortex arrays of various
interesting structures[29]. To illustrate our algorithm more
clearly, we take the superposition of three LG modes,
l1 ¼ 1, l2 ¼ 5, and l3 ¼ 15, each with the weight ampli-
tude al1

¼ 0.7, al2
¼ 1.1, and al3 ¼ 1.5, for example, to do

the numerical simulation. The phase distribution of the
original light field is shown in Fig. 1(b). It can be seen that
all of the topological charges have the unit topological
charge Q ¼ 1. Here, without losing generality, we take
N ¼ 3 to mimic the effect of third-harmonic generation
and generate the high-order vortex array with each vortex
carrying a topological charge Q0 ¼ 3, as manifested by the

Fig. 1. (a) Schematic illustration of the algorithm: We use spe-
cific supposition of low-order LGmodes to form the initial optical
vortex array fields, E1ðρ;ϕÞ, then multiply this field by N times.
By extracting the phase matrices and imparting a uniform inten-
sity, we then obtain theN-order vortex array efficiently. (b) Sim-
ulation of an original optical vortex array field produced by
superposing LG modes of l1 ¼ 1, l2 ¼ 5, and l3 ¼ 15. (c) Simu-
lation of a three-order optical vortex array generated from (b) by
setting N ¼ 3.
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characteristic forks in the phase distribution of Fig. 1(c).
Besides, the expansion of Eq. (4) gives a polynomial con-
sisting of different LG modes with a fixed coefficient, in-
dicating that our algorithm also provides a quantitative
way that one may directly utilize the diode pumping of
solid-state LG beam lasers[30,31] to produce an optical vor-
tex array with arbitrary topological charges at a high-
energy level.
Our experimental setup is sketched in Fig. 2. The light

source is a linearly polarized fundamental Gaussian mode
derived from a 2 mW, 633 nm HeNe laser. After being col-
limated by a telescope, the light beam is separated into
two parts, i.e., the reflected one trivially serves as a refer-
ence beam, while the transmitted one is expanded and in-
cident on a computer-controlled SLM (Hamamatsu,
X10486-1). The SLM serves as a reflective device consist-
ing of an array of 792 pixel × 600 pixel with an effective
area of 16 mm × 12 mm and a pixel pitch of 20 μm. Each
pixel imprints individually the incoming light with a phase
modulation (0–2π), according to the 8 bit grayscale
(0–255). The whole SLM acts as a reconfigurable diffrac-
tive element, allowing an interactive manipulation with a
response time comparable to the video displays[29,32]. Based
on the algorithm shown in Fig. 1(a), we prepare and dis-
play the holographic gratings in the SLM. Then, we make
the first diffraction order of reflected light propagate
through a 4f system consisting of two lenses and an adjust-
able iris placed at the focal plane. We direct the desired
light field of the vortex array to interfere with a tilted
reference plane wave at the second beam splitter (BS2).
A color CCD camera placed in the image plane is used
to record the interference intensity patterns.
According to our algorithm in Fig. 1(a), the first key step

is to mathematically prepare the holographic gratings
based on the superposition of a set of suitable standard
LG modes. For seeking the simplicity but without losing
the generality, we first considered the coaxial superposition
of two LG modes. For example, we present the experimen-
tal results for the unbalanced superposition of LG0

p¼0 and
LG3

p¼0, namely, E1ðρ;ϕÞ ¼ 0.8LG0
p¼0ðρ;ϕÞ þ LG3

p¼0ðρ;ϕÞ.
From the theoretical simulation of Figs. 3(a) and 3(b),
one can see that each vortex in the initial triangular array

merely carries one unit topological charge. Based on our al-
gorithm, we extract the phase distribution of E1ðρ;ϕÞ and
multiply it by N times, such that we obtain the tunable
topological charges, while the triangular structure stays un-
affected. For example, by simply setting N ¼ 5 and 10 in
our mathematical codes, we can conveniently obtain the
newly generated arrays carrying high-order topological
charges Q0 ¼ 5 and Q0 ¼ 10, respectively. The intensity
of Figs. 3(c) and 3(e) obviously shows that a higher vortex
leads to a larger dark hole at its center zone. Besides, we
record the interference patterns of Figs. 3(d) and 3(f),
where the five-prong and ten-prong forks clearly reveal
the topological charges, respectively. In Fig. 4, we further
consider another two-mode superposition, E1ðρ;ϕÞ ¼
LG5

p¼0ðρ;ϕÞ þ LG15
p¼0ðρ;ϕÞ, which initially generates a

vortex ring of Q ¼ 1 around a vortex center of Q ¼ 5.
By setting N ¼ 2, we can make the ring vortices carry a
topological charge Q0 ¼ 2, while the center vortex
Q0 ¼ 10, see Fig. 4(c). Similarly, we can triple the topo-
logical charges of all the vortices located at the ring and
center by setting N ¼ 3, see Fig. 4(e). The corresponding
vortex numbers are also manifested by the character-
istic forks after interfering with a tilted plane wave,
see Figs. 4(d) and 4(f), respectively.

As the LG modes constitute a set of complete orthogo-
nal bases, it would be interesting to see the coaxial super-
position of more than two LG modes. We consider such a
case in Fig. 5, where we display the mode superpositions
with the OAM spectra. As more LG modes are involved in
the formation of the vortex array, we can see that a more

Fig. 2. A schematic overview of the experimental setup to gen-
erate vortex arrays carrying high-order topological charges.

Fig. 3. (a), (b) Simulation results of the intensity and phase dis-
tributions of the original optical vortex array field with
0.8LG0

0 þ LG3
0. (c), (d) The five-order and (e), (f) ten-order op-

tical vortex array fields and their interference fringes with a tilt
plane wave.

COL 16(3), 030501(2018) CHINESE OPTICS LETTERS March 10, 2018

030501-3



complex structure appears, like the chess pieces spreading
over a chessboard, by adjusting the weight coefficient al, as
shown in Figs. 5(a) and 5(b). Each vortex embedded in the
initial light fields carries only a single-unit topological
charge. However, based on our algorithm, we obtain the
five- and three-order vortex arrays in Figs. 5(c) and 5(d),
respectively. The five-prong and three-prong forks of the in-
terference patterns in Figs. 5(e) and 5(f) also reveal clearly
the number of the topological charges. Thus, we are allowed
to draw a conclusion that if we superpose more LG modes
with tunable weight coefficients, it is possible to produce
any structured vortex array bearing arbitrarily high-order
topological charges.

We have demonstrated a feasible method to produce
high-order optical vortex arrays. Mathematically, our
method was based on a simple but effective algorithm,
which extracts and multiplies the pure phase matrices
of an initial low-order vortex array from the simple super-
position of suitable LG modes. With the use of a single
phase-only SLM, we prepared a variety of optical vortex
structures, including the triangular, ring, and chessboard
arrays, carrying high-order topological charges. Remark-
ably, our idea might also be directly implemented with an
efficient high-order-harmonic-generation crystal[33]. It is
noted that, unlike a strongly focused Gaussian laser, an
optical vortex can serve as a novel optical trap, where
the trapped particles, such as a biological red blood cell,
will not suffer optical damage by absorptive heating[34]. In
our scheme, we are able to multiply the topological
charges while maintaining the vortex structures. Such a
feature may lead to some promising applications in
optical micromanipulation, such as optical tweezers with
a twist[2], where an array of micro particles with a station-
ary trapping can be accelerated or decelerated in a fast
and controllable way.
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