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Digital speckle pattern interferometry (DSPI) is a high-precision deformation measurement technique for planar
objects. However, for curved objects, the three-dimensional (3D) shape information is needed in order to obtain
correct deformation measurement in DSPI. Thus, combined shape and deformation measurement techniques of
DSPI have been proposed. However, the current techniques are either complex in setup or complicated in oper-
ation. Furthermore, the operations of some techniques are too slow for real-time measurement. In this work, we
propose a DSPI technique for both 3D shape and out-of-plane deformation measurement. Compared with cur-
rent techniques, the proposed technique is simple in both setup and operation and is capable of fast deformation
measurement. Theoretical analysis and experiments are performed. For a cylinder surface with an arch height of
9 mm, the error of out-of-plane deformation measurement is less than 0.15 μm. The effectiveness of the proposed
scheme is verified.

OCIS codes: 120.4570, 120.3940.
doi: 10.3788/COL201816.111202.

Digital speckle pattern interferometry (DSPI) has
proven to be a powerful tool that is widely used for the
measurement of displacement/deformation[1–6], material
properties[7], object shape[8–12], and even temperature[13–16].
Especially, as an interferometry-based technology, DSPI
is widely recognized as a full-field, non-contact type defor-
mation measurement technique with an accuracy of
sub-micrometers[1–6]. To measure a deformation, two DSPI
interferograms are recorded before and after deformation,
respectively. By image processing of the subtraction of the
two interferograms, the deformation is acquired. DSPI
technology has been widely applied in the measurements
for planar objects. However, for objects with curved sur-
faces, it is difficult for DSPI to provide correct deforma-
tion measurements. This is because the sensitivity
vector of deformation varies with the shape of the curved
objects. In order to obtain the correct deformation of a
curved surface, the shape should be known and included
in the measurement. Therefore, for objects with curved
surfaces, shape information and displacement information
are both needed in order to obtain correct deformation
measurements.
Various combinations of shape and deformation

measurement techniques have been investigated by re-
searchers in the interferometry-based deformation
measurement domain. A comprehensive combination of
shape and deformation measurement was proposed by
Dekiff et al.[17]. The deformation along the optical axis
was measured by digital holographic interferometry
(DHI), and the shape measurement is performed by ster-
eophotogrammetry. With the shape information, the de-
formation was correctly measured. However, at least three

CCD cameras are required in this technique, with two
CCDs for shape measurement and the third CCD for de-
formation measurement, which makes the experiment
setup complex. Another technology utilized to determine
both shape and deformation was proposed by Beeck
et al.[18], where fringe projection technology combined with
the phase shifting method was used for shape measure-
ment, and holographic interferometry was adopted to
measure the displacement. Because additional structure
illumination and phase shifting setups are employed,
the setup is also complex. Meanwhile dynamic deforma-
tion measurement is hard to achieve with the phase shift-
ing method.

Besides the above mentioned stereophotogrammetry
and fringe projection techniques, other three-dimensional
(3D) shape measurement techniques, such as laser scan-
ning, laser speckle pattern sectioning, and moire[8–12],
can also be combined with interferometry-based deforma-
tion techniques for the correct deformation measurement
of curved objects. However, similar to the methods in
references[16,17], such combinations are always associated
with the problem of complex setup due to the adoption
of two different techniques. The DSPI technique can also
be used to measure shape[19–21]. Thus, a simpler approach
was proposed by Yang et al.[19], in which only DSPI tech-
nology was utilized for both shape and deformation mea-
surements. Dual-beam illumination was used for the shape
measurement, and single-beam illumination with phase
shifting interferometry was adopted to measure the defor-
mation. On one hand, real-time deformation measurement
is hard to achieve with phase shifting interferometry. On
the other hand, beam switching between shape and
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deformation measurements was needed in implementa-
tion, and three optical paths were built in the setup for
shape and deformation measurements. All of these made
the operation process complicated.
In this work, we propose a simple DSPI technique for

both shape and fast out-of-plane deformation measure-
ment for curved objects undergoing out-of-plane deforma-
tions. The proposed DSPI technique adopts only one
single DSPI setup and one single-beam illumination.
Therefore, both the setup configuration and operation
are simple. The Fourier transform (FT) method is utilized
to evaluate the phase from interferograms in the proposed
scheme, further promoting fast performance. In the case of
large field of view, where spherical wave illumination is
used, however, shape measurement error is generated.
An error compensation method is proposed to correct
the error associated with spherical wave illumination.
Theoretical analysis is performed. Experiments for the
proposed scheme and the proposed error compensation
method are performed. The effectiveness of the proposed
scheme and method is proved.
The proposed technique includes three steps. The first

step is to measure the shape of a curved object. To obtain
the shape of the object, interferograms with two different
illumination angles are recorded by rotating the illumina-
tion beam. The shape information is encoded in the differ-
ence of the two interferograms. By image processing, the
3D shape information is decoded. Sensitivity vectors are
calculated from the 3D shape data. Secondly, the dynamic
deformation along the optical axis direction is measured.
Two interferograms before and after deformation are
recorded. The FT method is utilized to obtain the phase
difference of the interferograms and then evaluate the de-
formation[18]. Finally, the true out-of-plane deformation is
obtained from the measured deformations along the opti-
cal axis direction based on the sensitivity vectors of the
curved object calculated in the first step.
For an object with a large size, illumination of the

spherical wave is used to generate a larger illumination
field. In the case of spherical wave illumination in the
shape measurement in the first step, error compensation
is implemented to correct the shape measurement error
and, therefore, the out-of-plane deformation measurement
error to improve the measurement accuracy. In the follow-
ing part, the three steps are discussed in detail.
The DSPI technique has been well-applied to the

deformation measurements for plane objects. Figure 1
illustrates the principle of DSPI in deformation measure-
ment. Assuming M is a point on the curved object, IM
denotes the illumination direction, and MO denotes the
observation direction, which is adjusted to be in line with
the optical axis of the system.
In this work, we consider the case that the deformation

is generated mainly in the optical axis direction, while the
deformation in the direction perpendicular to the optical
axis is very small. In such a case, the maximum deforma-
tion is in line with the optical axis. We illustrate such
a case in Fig. 1. M is an arbitrary point on the object.

After deformation, M moves to P along the optical axis
direction. A displacement d ðd ¼ MPÞ in the optical axis
direction is generated correspondingly. We denote H as
the foot position of common perpendicular (HP) of two
illumination beams before and after deformation. The op-
tical path difference (ΔL) introduced by the deformation
is expressed as

ΔL ¼ MP þMH ¼ dð1þ cos θÞ; (1)

where θ is the angle between the illumination direction
and observation direction. The corresponding phase differ-
ence is

ΔØ ¼ 2πΔ∕λ: (2)

Based on Eqs. (1) and (2), the deformation d is derived
as

d ¼ λ

2π
ΔØ

1þ cos θ
; (3)

where λ is the wavelength of the illumination beam. The
out-of-plane deformation dn ¼ MN is

dn ¼ λ

2π
ΔØcos ε
ð1þ cos θÞ ; (4)

where ε represents the angle between the normal vectors
(in the MN direction) of the curved surface and optical
axis (in the MO direction).

In Eq. (4), parameters λ and θ are known system param-
eters, but parameters ΔØ and ε are unknown. Parameter ε
depends on the 3D shape of the object and is not a con-
stant when the object has a curved surface. That is to say,
ε varies point by point on the curved surface. Therefore, in
order to obtain the out-of-plane deformation dn in Eq. (4),
the 3D shape of the curved surface must be obtained first.
In the DSPI technique, the phase difference ΔØ in Eq. (4)
is obtained by processing the subtraction of the two

Fig. 1. Geometry of DSPI system for deformation measurement.
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interferograms recorded before and after deformations,
which will be discussed in the next section.
In both the shape and deformation measurements of the

proposed schemes, two interferograms are recorded. The
shape and the deformation information are all decoded
in the phase difference (ΔØ) of the two interferograms.
Therefore, how to determine ΔØ from the two interfero-
grams is a key issue. In this work, the FT approach[22–27] is
adopted. Other methods also exist, such as the phase shift-
ing method. The advantage of the FT method is fast cal-
culation and the avoidance of using a piezoelectric
transducer (PZT) in the system, as in the phase shifting
approach, such that real-time phase evaluation is possible.
The phase evaluation process is discussed below. In or-

der to separate the spectrum, an angle was implemented
between the reference and object waves, resulting in a spa-
tial carrier[27]. For the intensity of a recorded interfero-
gram, where the interference between the object wave
and reference wave can be expressed as

iðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos½δðx; yÞ þ 2πf xx þ 2πf yy�;
(5)

where f x and f y are the spatial carrier frequency in the x
and y directions, δðx; yÞ is the phase of the interferogram.
Equation (5) can also be expressed as[28]

iðx; yÞ ¼ aðx; yÞ þ cðx; yÞ½expð2πf xxiÞ þ expð2πf yyiÞ�
þ c�ðx; yÞ½expð−2πf xiÞ þ expð−2πf yyiÞ�;

(6)

where cðx; yÞ is

cðx; yÞ ¼ 1
2
bðx; yÞ exp½δðx; yÞi�; (7)

and � represents the complex conjugate. Performing
two-dimensional FT to Fig. 2(a) by Eq. (6), the intensity
is transformed into the Fourier domain. Figure 2(b) shows
an example of the intensity of Eq. (8) in the Fourier do-
main. The spectrum of the interferogram in the Fourier
domain is

I ðf f x ; f f yÞ ¼ Aðf f x ; f f yÞ þ C �ðf f x − f x ; f f y − f yÞ
þ C �ðf f x þ f x ; f f y þ f yÞ; (8)

where f f x and f f y represent the coordinates of the x and
y axis, respectively, in the Fourier domain. The
term Aðf f x ; f f yÞ located in the center of the Fourier
domain is the zero order term, which comes from back-
ground information. Terms Cðf f x − f x ; f f y − f yÞ and
C�ðf f x þ f x ; f f y þ f yÞ, which are centrally and symmetri-
cally distributed with respect to the origin, are the two
first orders representing the object information. In the
processing, Cðf f x − f x ; f f y − f yÞ or C�ðf f x þ f x ; f f y þ
f yÞ is filtered out and shifted to the center of the Fourier
domain, such that Cðf f x ; f f yÞ or C�ðf f x ; f f yÞ, which is

the spectrum of cðx; yÞ in Eq. (6) or its conjugate, is ob-
tained in the Fourier domain. The cðx; yÞ in Eq. (6) is cal-
culated by applying an inverse two-dimensional FT to
Cðf f x − f x ; f f y − f yÞ or C�ðf f x þ f x ; f f y þ f yÞ. The phase
of cðx; yÞ is calculated as[23–25]

Øðx; yÞ ¼ Im½cðx; yÞ�
Re½cðx; yÞ� : (9)

Equations (6) to (9) explain how the phase of an inter-
ferogram is obtained. The phase difference ΔØ between
two interferograms can be calculated as

ΔØðx; yÞ ¼ Im½c1ðx; yÞ× c�2ðx; yÞ�
Re½c1ðx; yÞ× c�2ðx; yÞ�

; (10)

where c1 and c2 represent cðx; yÞ of the two interfero-
grams. The wrapped phase difference ΔØðx; yÞ is pre-
sented in Fig. 2(b) as an example. The short-time FT
filter is performed to reduce the noise in the wrapped
phase fringe pattern[29]. Finally, phase unwrapping is
implemented to transform the fringe pattern to continu-
ous form of ΔØðx; yÞ[30], which is shown in Fig. 2(c).

We adopt the single-beam DSPI configuration in shape
measurement, as shown in Fig. 3, instead of the dual-beam
configuration[18]. The same single-beam DSPI configura-
tion is used in the deformation measurement, which makes
the optics setup simple. As in Fig. 2, θ is the illumination
angle. The illumination beam is rotated by Δθ fromMI to
MI 0, which can be assumed that point source I at infinity
was translated to I 0. The optical path difference (ΔL) is
generated due to the rotation of the illumination angle
[9]. The corresponding phase difference ΔØ at an arbitrary
point Mðx; y; zÞ can be described as

Fig. 2. Illustration of the phase evaluation process. (a) DSPI in-
terferogram. (b) Spectrum of an interferogram in the Fourier do-
main. (c) The wrapped phase difference ΔØ. (d) The unwrapped
continuous phase difference ΔØ.
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ΔØ ¼ 2πΔL
λ

¼ 2πðMI −MI 0Þ
λ

: (11)

The initial position of the light source I at infinity can
be assumed to be the origin of the coordinate system.
I 0ðx1; y1; z1Þ denotes the light source position after beam
rotation. Because the rotation angle Δθ is very small, the
optical path difference ΔL is formulated as[10]

ΔL ¼
����������������������������������������������������������������������
ðx − x1Þ2 þ ðy − y1Þ2 þ ðz − z1Þ2

q

−
��������������������������
x2 þ y2 þ z2

p
≈
xx1 þ yy1 þ zz1��������������������������

x2 þ y2 þ z2
p : (12)

The deflection of the illumination beam is in the x‐z
plane, such that y1 ¼ 0, and x1 and z1 can be denoted
as[22]

x1 ¼ xΔθ; z1 ¼ zΔθ: (13)

ΔL can be simplified as

ΔL ¼ ðz sin θ þ x cos θÞΔθ; (14)

where sin θ and cos θ are

sin θ ¼ x��������������������������
x2 þ y2 þ z2

p ;

cos θ ¼ z��������������������������
x2 þ y2 þ z2

p : (15)

Combining Eqs. (11) and (15), the height z is obtained
as

z ¼ ΔØλ

2π sin θΔθ
−

x
tan θΔθ

: (16)

The shape of the object can be described as

Fðx; y; zÞ ¼ ΔØλ

2π sin θΔθ
−

x
tan θΔθ

− z ¼ 0. (17)

Then, the normal vector is n0 ¼
�∂F
∂x ;

∂F
∂y ;

∂F
∂z

�
. Consider

that the unit vector of the optical axis direction is
nop ¼ f0; 0; 1g. ε can be obtained as

ε ¼ arccoshn0; nopi: (18)

In the shape measurement, the angle θ is used to adjust
the sensitivity of the optical path length measurement in
the lateral and axis directions. The angle between 40° and
50° is preferred[8].

When the illumination beam is a spherical wave, θ is not
a constant over the whole CCD field. The larger the field
size is, the larger the error of the illumination angle will be.
A widely adopted method to control the error is to keep
the ratio of the object distance to the size of object much
larger than 1[9,22], such that the non-collimation effect is
not severe. Although such a method can control the error
caused by the spherical wave illumination to a certain
extent, the error still exists and affects the measurement
accuracy, especially for high-precision measurement.

In this work, the illumination angle θ0 is assumed to
arrive at the object at central point M 0ðx0; y0; z0Þ of the
object, which is determined by the physical structure.
Due to x and y also being expressed by the numbers of
the pixel size, Eq. (15) can be represented by

sin θðxm ;ynÞ ¼
x0 þmu���������������������������������������������������������������ðx0 þmuÞ2 þ ðy0 þ nuÞ2 þ z20

p ;

cos θðxm ;ynÞ ¼
z0���������������������������������������������������������������ðx0 þmuÞ2 þ ðy0 þ nuÞ2 þ z20

p ; (19)

where u represents the enlarged pixel size, m and n are
pixel indexes in the x and y directions with respect to
x0 and y0, and θðxm ;ynÞ represents the illumination angle
at each pixel ðxm; ynÞ.

In Eq. (19), while the values of x0 and y0 are much larger
than the size of the measurement field, θ is assumed to be a
constant equal to θ0. But for a large size field, θ is
a function of x and y. The error of the spherical wave
illumination is

e ¼ ΔØλ

2π½sin θ0 − sin θðxm ;ynÞ�Δθ
−

x
½tan θ0 − sin θðxm ;ynÞ�Δθ

:

(20)

Assume that the size of the field of view is
100 mm × 100 mm, the object distance is 500 mm, and
the maximal angle difference in the field is 8.4 and results
in the maximum error of 0.925 mm at the edge for the
shape height of 9 mm, which should not be ignored for
shape measurement.

The DSPI setup is shown in Fig. 4. A semiconductor la-
ser with a wavelength of 532 nm and power of 50 mW is
used as the light source. A beam expander (BE1) trans-
forms a point light source to a plane wave and expands
the beam by five times. By splitting the parallel beam into
two beams by a polarizing beam splitter (PBS), the object
wave and reference wave are generated. Another beam
expander (BE2) located between the object and mirror
1 further expands the parallel reference beam to a larger
field (five times more than before) of illumination.

Fig. 3. Geometry of DSPI system for shape measurement.
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Two half-wave plates (HWP1, HWP2) in combination
with the PBS are used to adjust the intensity ratio between
the object beam and reference beam for better interfero-
gram quality. The object beam reflected by the object sur-
face is collected by an imaging lens, which generates a
reduced image of the object at the CCD camera (DMK
51BU02) with 1600 pixel × 1200 pixel: The pixel size is
4.65 μm. The imaging lens has a focal length of 85 mm
and shrinks the field of view by 10 times, such that a larger
field of view of 50 mm× 37.5 mm is finally recorded by the
CCD. An aperture slot is used before the imaging lens to
reduce the high-frequency noise and improve the interfer-
ence quality.
In this work, two experiments are performed. In one ex-

periment, the spherical wave illumination surface profiling
is implemented, and the compensation effect of the pro-
posed method is evaluated. In the other experiment, the
proposed DSPI technique for out-of-plane deformation
measurements of a curved object is examined.
A 3D printed cylinder surface with arch height of 9 mm

is used as the test piece. A pitching stage is employed to
introduce displacement along the optical axis. Firstly, the
shape measurement is performed. Mirror 1 mounted in a
rotation stage (TTR001/M, Thorlabs) rotates the illumi-
nation beam by an angle of Δθ ¼ 0.03°. The CCD camera
records two interferograms before and after beam deflec-
tion. The shape data is then calculated by Eq. (16), and
shape-related parameter ε is calculated by Eq. (18). Sec-
ondly, the object is displaced in the direction of optical
axis. With one edge fixed, the other parallel edge is
displaced. The applied rotation angle changes from 0°
to 0.0515° with an interval of 0.00515°. The CCD camera
records the interferograms before and after the displace-
ments. The deformations along the optical axis direction
are calculated with Eq. (3). Combining the results of shape
data, the out-of-plane deformations can be calculated
by Eq. (4).
Firstly, shape measurement is implemented. The mea-

surement result of a cylinder surface of an arch height
of 9 mm is shown in Fig. 5. The 3D shape is shown in
Fig. 5(a). A section in the center of the surface is shown
in Fig. 5(b). Figure 5(c) shows the normal vector n0 of the
curved surface to calculate ε. The measured value of the

arch is 9.24 mm. Taking into account the error of 3D print-
ing that is 0.05 to 0.4 mm, the shape measurement error
from the design value of 9 mm is relatively small and
acceptable.

Secondly, the deformation measurement is implemented
after shape measurement. The displacement of a rigid body
is used to substitute the deformation in this experiment.
The displacement is implemented in the direction of the
optical axis with an interval of 10 μm by a differential
micrometer drive. The experimental measurement results
are compared with theoretical values, as shown in Fig. 6.
Figure 6(a) shows the deformation measured along the op-
tical axis direction. From themeasured deformations in the
optical axis direction in Fig. 6(a), the applied rotation an-
gles are derived and compared with the true applied rota-
tion angles in Fig. 6(c). The measured deformations and
the applied deformations agree well with each other.
The 3D out-of-plane displacement of the curved surface
is further calculated by including the measured 3D shape
in Fig. 5(a), and the result is presented in Fig. 6(b). The
profiles of the 3D out-of-plane displacement in Fig. 6(b) in
the x and y directions are shown in Figs. 6(d) and 6(e),
respectively, where the measurement results are compared
with the theoretical applied values. Themean square errors
(MSEs) between the measured out-of-plane deformations
and the theoretical applied out-of-plane deformations are
calculated in the whole field of view for 10 loads, and the
result is shown in Fig. 6(f). It is seen that the MSE is from
about 0.06 to 0.093 μm, which indicates that the proposed
out-of-plane deformation measurement technique for a
curved object has high accuracy. The effectiveness of
the proposed technique is verified.

To evaluate the proposed compensation method for
reduction of the error caused by the spherical wave
illumination, the shape measurement experiment is

Fig. 4. Experimental DSPI setup.

Fig. 5. Experiment result of out-of-plane deformation measure-
ment for curved objects. (a) The wrapped phase difference ΔØ.
(b) The unwrapped continuous phase difference ΔØ. (c) Shape
measurement result. (d) A section through the center of the
surface.

COL 16(11), 111202(2018) CHINESE OPTICS LETTERS November 10, 2018

111202-5



implemented with spherical wave illumination, and the
compensation methods in Eqs. (19) and (20) are applied
to the measurement. The results are shown in Fig. 7.
The experimental results show that the MSE caused by

the spherical wave illumination is reduced by about 50%
with the proposed compensation method. Hence, the effec-
tiveness of the proposed method is verified. We recom-
mend using such a compensation method in spherical
wave illumination, especially for objects with larger size,
to improve the measurement accuracy in both shape and
further the out-of-plane deformation.
A methodology for 3D shape and out-of-plane deforma-

tion measurement of curved objects with only one single
DSPI setup and one illumination beam is proposed. Com-
pared to current interferometry-based techniques for out-
of-plane deformation measurement of curved objects, the

proposed technique is simpler in both setup and operation
and allows fast measurement. The preliminary experi-
ments are performed, and the effectiveness of the proposed
technique is verified with a high accuracy.

This work was supported by the National Key Research
and Development Project of China (No. 2016YFF0200700)
and the National Natural Science Foundation of China
(No. 61405111).
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