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For better night-vision applications using the low-light-level visible and infrared imaging, a fusion framework for
night-vision context enhancement (FNCE) method is proposed. An adaptive brightness stretching method is
first proposed for enhancing the visible image. Then, a hybrid multi-scale decomposition with edge-preserving
filtering is proposed to decompose the source images. Finally, the fused result is obtained via a combination of the
decomposed images in three different rules. Experimental results demonstrate that the FNCEmethod has better
performance on the details (edges), the contrast, the sharpness, and the human visual perception. Therefore,
better results for the night-vision context enhancement can be achieved.
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The low-light-level visible images always provide the
details and background scenery, while the target is often
detected/recognized via the infrared imaging[1,2] in night
vision. As the visible and infrared image fusion technology
can improve the perception of the scene in addition to the
ability to detect/recognize the target[3], the fusion technol-
ogy of the low-light-level visible and infrared images plays
a significant role in night vision and has been successfully
applied in the areas of defense and security[4].
However, night-vision images usually have relatively

strong noise, low contrast, and unclear details (including
edges). Moreover, human eyes are very sensitive to the de-
tails and noise. As these factors have not been considered
in most proposed fusion methods, it is difficult to achieve
good results in night vision. Thus, an appropriate fusion
technology is required for night vision to obtain better re-
sults for the night-vision context enhancement.
Liu et al. proposed a modified method to fuse the visible

and infrared images for night vision[5]. In the method, the
visible image is enhanced via the corresponding infrared
image, and the fused result is obtained using a conven-
tional multi-scale fusion method. The details of the visible
image are not fully enhanced. Salient targets in the infra-
red image are displayed in dark pixels, which is not good
for visual perception. A fusion method for low-light visible
and infrared images based on contourlet transform is
proposed[6]. Different rules are used for the combination
of the low-frequency and high-frequency information.
The details of the visible image are not fully enhanced
either. Zhou et al. proposed a guided-filter-based context
enhancement (GFCE) fusion method for night vision[7].
In the result of the GFCE method, the noise has been
amplified along with the detail enhancement, and some
distortions may emerge in the bright regions due to
over enhancement. In all of these methods, neither a
denoising method nor a detail enhancing method is used.

Furthermore, the details (including edges) cannot be
preserved well enough during the fusion process. Thus,
further research needs to be done to obtain better
context-enhancement results for the low-light-level visible
and infrared imaging.

In order to address the above problems for better night-
vision applications, a low-light-level visible and infrared
images fusion framework for night-vision context enhance-
ment (FNCE) is proposed in this Letter, as shown in Fig. 1.
Actually, the FNCE method can be divided into two
parts: the initial enhancement and the fusion process.
In the initial enhancement, an adaptive brightness
stretching method has been first proposed to enhance
the visibility of the low-light-level visible image. At the
same time, the denoising and detail enhancement methods
are applied for source images. As the multi-scale

Fig. 1. The proposed infrared and visible image FNCE.
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decomposition (MSD) method based on edge-preserving
filtering can accurately extract the details at different
scales[8]. Furthermore, the gradient domain guided image
filtering (GDGF)[9] has better edge performance than the
guided image filtering (GF)[10]. Therefore, in the fusion
process, a structure of the hybrid MSD with the GF
and the GDGF has been proposed to fully decompose
the enhanced source images. In addition, the multi-scale
weight maps are obtained using a perception-based
saliency detection technology at each scale. Finally, the
fused result is obtained via the combination of decom-
posed images with the multi-scale weight maps in three
different combination rules according to different scales.
The “Queen’s Road,” as shown in Fig. 2(a), is collected

from the website http://www.imagefusion.org/. The
“Buildings” source images, as shown in Fig. 2(b), are cap-
tured by a low-light-sensitive CMOS camera and a mid-
wave infrared camera. The two test pairs are the typical
scenes of urban surveillance applications. As shown in
Fig. 2, the source images are usually displayed with un-
clear details, as well as some noise. Moreover, the contrast
of the low-light-level visible image is always low. Thus,
as shown in Fig. 1, some enhancement methods must
be applied to the source images before the fusion process.
Firstly, a denoising method with the edge-preserving

GDGF[9] is used for both the source images to reduce
the noise. The values of the filtering parameters of the
GDGF are r ¼ 2, λ ¼ 0.0001 for the low-light-level visible
image, and r ¼ 3, λ ¼ 0.001 for the infrared image,
respectively.
Following this, an adaptive brightness stretching

method is proposed for enhancing the visibility of the
low-light-level visible image as follows:

IBS ¼
8<
:

m
μI
I ; if I < μI

I ; if I ≥ H
H−m
H−μI

ðI − μI Þ þm; if μI ≤ I < H
; (1)

where I is the input image, IBS is the stretched image, μI is
the mean of the input image, and (μI , m) and (H , H) are
the two inflection points of the piecewise linear stretching.
As shown in Fig. 3, parts smaller than μI will be linearly
stretched to m, parts larger than H will be retained,
and the rest will be linearly mapped between m and H .
The values of parameters in our work are m ¼ 3μI ,
90 < m < 150, and H ¼ 220. The μI is stretched to three
times that of the original. At the same time, m should be
between 90 and 150, where the mean of the image with

normal illumination is. Therefore, values of the low-
light-level visible image can be effectively enhanced to
an appropriate range without insufficient or over enhance-
ment via the proposed adaptive brightness stretching
method.

Finally, the detail enhancement method with the GF[10]

is applied to both source images. The values of the filtering
parameters of the GF are r ¼ 2, λ ¼ 0.5, the detail layer is
boosted 2.5 times for the low-light-level visible image, and
r ¼ 3, λ ¼ 0.5, boosted 3 times for the infrared image.

The initial enhancement results for the “Queen’s Road”
visible image are shown in Fig. 4. Close-up views for the
labeled regions are presented. It can be seen that more and
clearer details are presented with less noise using our
enhancing method. Thus, the proposed enhancing method
for the low-light-level visible image is more effective.

In order to make full use of the information at different
scales, a hybrid MSD with the GF and the GDGF is pro-
posed to decompose both source images. The structure of
the proposed hybrid MSD is designed as shown in Fig. 5.
The GDGF is used to obtain the details of the image (in-
cluding edges). As an adequate amount of low-frequency
information is difficult to obtain via the GDGF, the low-
frequency information will be obtained by using the strong
GF. As shown in Fig. 5, there are three different levels: the
small-scale detail level, the large-scale detail level, and the

Fig. 2. Test pairs of visible and infrared images captured under
low-light-level conditions. (a) “Queen’s Road,” (b) “Buildings.”

Fig. 3. Adaptive brightness stretching method.

Fig. 4. Initial enhancement results for the “Queen’s Road”
visible image. (a) The original, (b) result with Zhou’s method[7],
and (c) result with the proposed method.
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base level in the decomposition. As the finer details for
an image are at the first scale of the hybrid MSD, detail
images from the first scale are regarded as the images of
the small-scale detail level. The detail images from the sec-
ond to the nth scale are regarded as the images of the
large-scale detail level. The coarsest-scale information is
obtained for the base level and can roughly represent
the energy distribution.
In the proposed hybrid MSD structure, texture informa-

tion Dði;0Þ and edge information Dði;1Þ at the ith scale are
respectively computed as

Dði;0Þ ¼ I ði−1Þ
s − I ðiÞg ;

Dði;1Þ ¼ I ðiÞg − I ðiÞs ;
ði ¼ 1;…; nÞ; (2)

where I ðiÞs and I ðiÞg are the filtered images at the ith scale
with the GF and the GDGF, respectively, both I ð0Þs and
I ð0Þg are the input image I , and n is the number of decom-
position scales. I ðiÞs and I ðiÞg can be obtained as follows:

I ðiÞs ¼ GFrðiÞs ;λs
ðI ði−1Þ

s ; I ði−1Þ
s Þ;

I ðiÞg ¼ GDGFrðiÞg ;λðiÞg
ðI ði−1Þ

g ; I ði−1Þ
g Þ; ði ¼ 1;…; nÞ; (3)

where rðiÞs and λs are the filtering parameters of the GF
at the ith scale, rðiþ1Þ

s ¼ krðiÞs , k is a decomposition factor
between adjacent scales, λs is set to be very large
(1 × 104) to acquire low-frequency information; rðiÞg and
λðiÞg are the filtering parameters of the GDGF at the ith
scale, rðiþ1Þ

g ¼ krðiÞg , and λðiþ1Þ
g ¼ λðiÞg ∕k. Furthermore, as

shown in Fig. 5, let the filtered image of the GF at the
nth scale I ðnÞs be the base image B.
In the fusion process, three different combination rules

are respectively designed for the three different levels. The
frequency-tuned filtering computes bottom-up saliency[11].
The output of the saliency model strongly correlates with
human visual perception[12]. For better weight maps, the
frequency-tuned filtering is used to extract the saliency
information from the background at each scale. As the tar-
gets are always more significant in the infrared images, the
weight maps are mainly based on the infrared information,
and the infrared characteristic information of the target is
maximally highlighted at each scale.
The fused image Fuse is obtained via weighted combi-

nations of the decomposed images as follows:

Fuse ¼ FB þ
Xn
i¼1

F ðiÞ
D ; (4)

where FB is the base fused image, and F ðiÞ
D is the detail

fused image at the ith scale.
For the small-scale detail level, the fused image F ð1Þ

D can
be obtained as

F ð1Þ
D ¼

X
j

½W ð1;jÞ
IR Dð1;jÞ

IR þ ð1−W ð1;jÞ
IR ÞDð1;jÞ

Vis �; ð j ¼ 0; 1Þ;

(5)

where Dð1;jÞ
IR and Dð1;jÞ

Vis are the infrared and visible images
at the first scale, andW ð1;jÞ

IR is the weight maps of the infra-
red images for the small-scale detail level.

The saliency maps of the infrared and visible images
for the small-scale detail levels S ð1;jÞ

IR and S ð1;jÞ
Vis (j ¼ 0, 1)

are obtained using the frequency-tuned filtering for
Dð1;jÞ

IR and Dð1;jÞ
Vis (j ¼ 0,1), respectively. Following this,

the binary weight maps of the infrared BWð1;jÞ
IR are com-

puted as

BWð1;jÞ
IR ¼

�
1 if S ð1;jÞ

IR ≥ S ð1;jÞ
Vis

0 otherwise
; ðj ¼ 0; 1Þ: (6)

The resulting binary weight maps are noisy and are typ-
ically not well aligned with object boundaries. Therefore,
spatial consistency is restored through the GDGFwith the
corresponding detail images (Dð1;jÞ

IR ) used as guidance im-
ages. Finally, the weight maps of the infrared images for
the small-scale detail level W ð1;jÞ

IR is obtained as follows:

W ð1;jÞ
IR ¼ GDGFrð1Þ;λð1Þ ðDð1;jÞ

IR ;BWð1;jÞ
IR Þ; ðj ¼ 0; 1Þ; (7)

where the values of filtering parameters are rð1Þ ¼ rð1Þg

and λð1Þ ¼ λð1Þg ∕10.
For the large-scale detail level, the combination rule is

similar to that for the small-scale detail level. The fused
image for the large-scale detail level F ðiÞ

D is obtained as

F ðiÞ
D ¼

X
½W ðiÞ

IRD
ði;jÞ
IR þ ð1−W ðiÞ

IRÞDði;jÞ
Vis �;

ði ¼ 2;…; n; j ¼ 0; 1Þ;
(8)

where Dði;jÞ
IR and Dði;jÞ

Vis are the infrared image and visible
images at the ith scale, and W ðiÞ

IR is the weight maps of
the infrared images at the corresponding scale.

It should be noted that there is only one weight map
W ðiÞ

IR for the images at the ith scale for the large-scale de-
tail level. It is because the two kinds of detail images,Dði;0Þ

and Dði;1Þ (i ¼ 2;…; n), always have similar structures.
However, the edge detail image Dði;1Þ has better edge per-
formance than the texture detail image Dði;0Þ. Thus, only
Dði;1Þ is used for the large-scale detail level.

The saliency maps of the infrared and visible images at
ith scale for the large-scale detail levels S ði;1Þ

IR and S ði;1Þ
Vis

(i ¼ 2;…; n) are also obtained using frequency-tuned fil-
tering for the corresponding images Dði;1Þ

IR and Dði;1Þ
Vis

Fig. 5. Structure of the hybrid MSD with the GF and the
GDGF.
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(i ¼ 2;…; n). Following this, the binary weight maps of the
infrared BWðiÞ

IR (i ¼ 2;…; n) are computed as

BWðiÞ
IR ¼

�
1 if S ði;1Þ

IR ≥ S ði;1Þ
Vis

0 otherwise
; ði ¼ 2;…; nÞ: (9)

The binary weight maps BWðiÞ
IR (i ¼ 2;…; n) are also

filtered using the GDGF with the corresponding detail im-
agesDði;1Þ

IR (i ¼ 2;…; n) as guidance images. Finally, weight
maps of the infrared for the large-scale detail level W ðiÞ

IR
(i ¼ 2;…; n) can be obtained as

W ðiÞ
IR ¼ GDGFrðiÞ;λðiÞ ðDði;1Þ

IR ;BWðiÞ
IRÞ; ði ¼ 2;…; nÞ; (10)

where rðiÞ ¼ rðiÞg , and λðiÞ ¼ λðiÞg ∕10 for the GDGF.
For the base level, the fused image FB is computed as

FB ¼ WB
IRBIR þ ð1−WB

IRÞBVis; (11)

where BIR and BVis are the base images of the infrared and
visible, respectively, and WB

IR is the weight map of the
infrared image for the base level.
The saliency maps of the infrared and visible images

for the base levels SB
IR and SB

Vis are obtained via the
frequency-tuned filtering for the corresponding base

images. Then, the binary weight map of the infrared
BWB

IR is computed as

BWB
IR ¼

�
1 if SB

IR ≥ SB
Vis

0 otherwise
: (12)

The binary weight map BWB
IR is smoothed using a

Gaussian filter to fit the combination of extremely
coarse-scale information. Finally, the weight map for
the base level WB

IR is obtained as follows:

WB
IR ¼ gσbðBWB

IRÞ; (13)

where σb ¼ 2rns for the Gaussian filtering gðÞ.
In order to test the proposed FNCE method, three

state-of-the-art fusion methods are selected for compari-
son: the guided filtering fusion (GFF) method[13], the gra-
dient transfer fusion (GTF) method[14], and the GFCE
method[7]. All the comparative methods are implemented
using the public codes, where the parameters are set
according to the corresponding Letters. In the FNCE
method, the number of decomposition scales n ¼ 4, the de-
composition factor k ¼ 2, and the initial values of the GF
are rð1Þs ¼ 3, and λs ¼ 104, as well as the initial values of
the GDGF of rð1Þg ¼ 2, and λð1Þg ¼ 0.05.

It can be seen from the fusion results of the test images
in Fig. 6 that the results of the FNCEmethod have clearer
details (including edges), more salient targets, better

Fig. 6. Fusion results of different methods for the test images.
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contrast, and less noise than other methods. Close-up
views for the labeled regions are presented below the im-
ages. The results of the GFF method have little detail in-
formation from the visible image and are similar than the
infrared image with unclear details, as shown in Fig. 6(a).
Moreover, the clouds from the infrared image are nearly
lost in the “Buildings” result. For the GTF method, as
shown in Fig. 6(b), although the results have the least
noise, the details are unclear enough. Moreover, lots of in-
formation from the visible is lost, for example, the lights.
For the GFCE method, as shown in Fig. 6(c), the bright
parts (for example, the labeled building with lights) are
obviously over-enhanced, and the noise in the sky is ob-
vious in the “Buildings” result. The results of the GFCE
method have obvious noise and not clear enough details
(edges). Moreover, some distortions may occur due to
the over enhancement in the GFCE method. For the
FNCE method, as shown in Fig. 6(d), the road sign shown
by the red arrow is clearest without distortions in the
“Queen’s Road” result. Therefore, the proposed FNCE
method is able to acquire better results for the human vis-
ual perception in night vision.
Information entropy (IE), average gradient (AG),

gradient-based fusion metric (QG)
[15], the metric based

on perceptual saliency (PS)[7], and the fusion metric based
on visual information fidelity (VIFF)[16] are selected for the
objective assessment. IE evaluates the amount of informa-
tion contained in an image. AG indicates the degree of
sharpness. QG is recommended for night-vision applica-
tions[17] to evaluate the amount of edge information trans-
ferred from the source images. PS measures the saliency
of perceptual information contained in an image. VIFF
evaluates the image quality of the fused image in terms of
human visual perception. Table 1 gives the quantitative
assessments of different fusion methods on four test image
pairs, and the best results are highlighted in bold. The
values in Table 1 are averaged values of the four test pairs.
It can be seen from Table 1 that IE, AG, PS, and VIFF all
achieve the best values in the FNCEmethod, which means
the proposed FNCE method can extract more informa-
tion, have better sharpness, have more saliency informa-
tion, and achieve better human visual perception. In
addition, the QG value of the FNCE method is in the sec-
ond rank, and it means edges can be relatively better pre-
served via the FNCE method as well.
The average running time of the different methods on

640 × 480 source images is shown in Table 2. All of the

compared methods are implemented via MATLAB on a
computer (Inter i5 3.40 GHz CPU, 4G RAM).

After the experimental comparisons, it can be seen that
better human visual perception is achieved with more
salient targets, better details (edges) performance, better
contrast, better sharpness, and less noise in the FNCE
method. Obviously, the proposed FNCE method is more
effective, which will help to obtain better context enhance-
ment for the night-vision imaging. Although the FNCE
method is slightly time-consuming, it is acceptable, con-
sidering the better fused result.

In conclusion, an FNCE method is proposed. First, an
adaptive brightness stretching method is proposed to en-
hance the visibility of the low-light-level visible image.
Following this, a structure of the hybrid MSD with the
GF and the GDGF is proposed for fully decomposing
the enhanced source images. In addition, weight maps
are obtained via a perception-based saliency detection
technology at each scale.

Experimental results show that better results for
night-vision context enhancement can be acquired via the
proposed FNCE method. In the future, the idea of the fast
GF[18] may be introduced into the simplifications of the
FNCE method for practical applications. Moreover, the
previous frame video image may be used as the guidance
image of the current frame to reduce the delay.

This work was supported by the National Natural
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