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Loss is inevitable for the optical system due to the absorption of materials, scattering caused by the defects, and
surface roughness. In quantum optical circuits, the loss can not only reduce the intensity of the signal, but also
affect the performance of quantum operations. In this work, we divide losses into unbalanced linear losses and
shared common losses, and provide a detailed analysis on how loss affects the integrated linear optical quantum
gates. It is found that the orthogonality of eigenmodes and the unitary phase relation of the coupled waveguide
modes are destroyed by the loss. As a result, the fidelity of single- and two-qubit operations decreases signifi-
cantly as the shared loss becomes comparable to the coupling strength. Our results are important for the
investigation of large-scale photonic integrated quantum information processes.

OCIS codes: 270.0270, 130.0130.
doi: 10.3788/COL201715.092701.

Photonic integrated circuits (PICs)[1] have been developed
for the increasing complexity of both classical and quan-
tum information processing, which is demanding on
scalability, stability, and high-quality interference. By in-
tegrating the waveguides and controlling their coupling on
a chip, basic optical elements[2] in bulk optics can be real-
ized on-chip with high quality, such as a beam splitter
(BS), phase shifter, and polarization beam splitter
(PBS)[3,4]. Recently, a quantum C-NOT gate, quantum
walk, and Boson sampling have been performed on a single
chip, based on silica-on-silicon waveguides[5,6], laser direct
writing waveguides[7,8], and plasmonic waveguides[9,10].
There remains challenges in integrating optical devices
with good performance, and the errors due to experimen-
tal imperfection will be amplified when cascading many
basic integrated devices together for future quantum com-
puting, simulation, and communication.
Among various imperfections, loss is inevitable that is

generated from both the essential absorption of materials
and the technical problems in fabrication. The effect of
loss in bulk optics has been studied in earlier years[11,12].
When dealing with integrated circuits, many basic optical
components are integrated together, and more complex
structures should attract our attention. Generally, there
are off-chip insertion losses and on-chip waveguide losses.
Usually, people summarize these linear losses and combine
them with the inefficiency of detectors. Since quantum
processes can be realized via post selection, which claims
success when detecting the photons in the desired manner,
so linear quantum computation can still be performed
with those imperfections, and the only influence is the
low success probability.

In this Letter, we studied the general loss model in the
on-chip BS devices and its effects on the gate fidelities. We
found that when there is an unbalanced loss (UBL) or a
shared common loss (CL) channel in the BS, there will be
significant errors that will affect the performance of the
optical quantum processing.

For an ideal linear process supported by a quantum PIC,
the relation between the input and output field can be de-
scribed by a unitary matrix. It has been demonstrated that
any unitary matrix can be decomposed to the product of
two level matrices[13], which meanwhile can be further de-
composed to phase shifters and BSs[14]. Figure 1(a) shows
a sketch picture of a directional coupler, the physical reali-
zation of a BS, where two waveguides approach each other
and exchange energy. For simplicity, we only focus on the
uniform coupling regime, whose properties can be analyzed
by solving the eigenmodes of the coupled waveguide at the
cross section. In the weak coupling regime, two waveguides
couple with each other through tunneling, which can be
quantitatively described by the coupling rate C. According
to the coupled mode theory, the dynamics of photon am-
plitude A1, A2 in two waveguides should obey

d
dL

A1 ¼ ð−iβ − γ1ÞA1 − iCA2; (1)

d
dL

A2 ¼ ð−iβ − γ2ÞA2 − iCA1; (2)

where β is the propagation constant, γi is the damping
rate, and L is the distance along the propagation direc-
tion. The coupled equations can also be expressed in
vector form
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d
dL

A
!¼ −iHA

!
; (3)

A
!¼

�
A1
A2

�
; H ¼

�
β − iγ1 C

C β − iγ2

�
: (4)

Therefore, the eigenmodes can be solved by solving the
eigenvector of H as a superposition of the field in two
waveguides. If a photon is loaded to one of the waveguides
corresponding to the superposition of the two eigenmodes,
the photon will oscillate between the waveguides in the
sine function form since the eigenvalues of the two eigenm-
odes are different.
In general, we assume the two waveguides and their sur-

roundings are made by different materials, and the config-
urable structures can be divided into three cases: (i) two
waveguides are identical, thus the propagation losses
γ1 ¼ γ2, (ii) the two waveguides are made by different ma-
terials (γ1 ≠ γ2) and the surrounding material is lossless
(iii) γ1 ¼ γ2 while the surrounding material is absorptive.
For case (i), the propagation loss of light in the two wave-
guides can be taken out as a global damping factor, thus
the two waveguides couple with each other as they are
ideal, except for the attenuation of the amplitude. The left
column in Fig. 1(b) shows the eigenmodes for case (i), the

two modes are orthogonal as the field in two waveguide
are in-phase and out-of-phase, respectively, while the am-
plitude in the two waveguides are identical. When dealing
with hybrid PICs, case (ii) should be considered. The
modes in the two waveguides attenuate with different
rates and exchange energy continuously with each other
when they propagate forward. However, the different
damping rates make them no longer orthogonal, which
is explicitly shown in the middle column of Fig. 1(b). In
all the cases, the two eigenmodes have different energy dis-
tributions. If material 3 is absorptive, different energy
penetration to material 3 means different damping loss,
corresponding to case (iii). For long coupling length,
the eigenmode with a bigger loss becomes negligible com-
pared with the one with a smaller loss. Even though the
two modes are still orthogonal the different amplitudes de-
stroy the interference. For cases (ii) and (iii), the imper-
fections are named as UBL and CL, respectively. From the
preliminary analysis, we can judge that loss can indeed
change the evolution of photonic quantum states in
the PIC.

For case (ii), the UBL usually exists in hybrid coupled
waveguides, for example two waveguides supported by
dielectric and metal materials [15,16]. The UBL may also ap-
pear if the fabrication roughness or curvature of the two
waveguides is different.

By Eq. (4), the outputs of two waveguide can be solved

as A
!ðLÞ ¼ e

R
L

0
−iHdLA

!ð0Þ ¼ MðLÞA!ð0Þ, with L being the
length of the coupling region. We obtain

MðLÞ¼eð−iβ−γ1þγ2
2 ÞL

×
�Δγ

2αcoshðαLÞ−sinhðαLÞ iC
α sinhðαLÞ

iC
α sinhðαLÞ Δγ

2αsinhðαLÞþcoshðαLÞ
�
;

(5)

where Δγ ¼ γ1 − γ2 and α ¼
������������������������������
ðΔγ2∕4Þ− C 2

p
. For the

bosonic operator of input ports ain1;2, the output should
be (j ¼ 1; 2)

aoutj ¼ ½MðLÞ�j;1ain1 þ ½MðLÞ�j;2ain2 þ
X∞
0

pkck ; (6)

where ck is the accessible environment mode and pk
is the amplitude probability satisfying

P
k jpk j2þ

j½MðLÞ�j;1j2 þ j½MðLÞ�j;2j2 ¼ 1.
In Fig. 2(a), we plot the probabilities j½MðLÞ�j;1j2 as a

function of L. These two curves still behave as a sine func-
tion oscillation accompanied by exponential decay. The
inset shows the oscillation curves by eliminating the global
damping factor e−ðγ1þγ2∕2ÞL. We find an unusual phenome-
non that the phase between the two sine oscillations is no
longer π, which is different from the ideal case. To explain
the decreased phase, we investigated the change of the ei-
genmodes altered by such UBL. By diagonalizing matrix
H, we get the eigenvalues βþ, β−, and eigenvectors jþi,

Fig. 1. Eigenmodes of coupled waveguides. (a) A schematic of a
directional coupler. (b) The cross-section electric field distribu-
tions of the eigenmodes for different cases. From the left column
to right, the pictures correspond to the (i) ideal case γ1; ¼ γ2,
(ii) γ1 ≠ γ2, and material 3 is lossless, (iii) γ1 ¼ γ2 and material
3 is absorptive. For the left and right case, the two eigenmodes
are orthogonal and the overlap is zero. For the middle case, the
overlap of the two modes is positive.
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j−i, corresponding to the effective mode propagation in-
dex and the wave function of the eigenmodes, respectively.
The eigenvalues are

β� ¼ β −
iðγ1 þ γ2Þ

2
�

�����������������������
4C2 − Δγ2

p
: (7)

First, we investigated the mode orthogonality of the ei-
genmodes, and plotted the overlap of the two eigenmodes
jhþj−ij2 in Fig. 2(b). The UBL destroyed the orthogonal-
ity of the eigenmodes. As the UBL Δγ approaches C, the
overlap between the two modes increases to unity, which
means the two modes are almost identical. As a result, the
phase difference between the two oscillations in Fig. 1(a)
decreases from π to 0 and the two curves get closer. The
broken mode orthogonality was also demonstrated by the
change of the effective mode index of the eigenmodes.
Figure 2(c) gives the real and imaginary part of the differ-
ence of βþ and β−. Δβ decreases as Δγ changes close to 2C.
It should be noted that, at the critical point α ¼ 0, the two
eigenmodes become totally the same, which is called the
exceptional point[17,18]. The two eigenmodes completely

overlap and share the same mode index. At the excep-
tional point, the two-dimensional system coalesces to
one dimension. By diagonalizing the Hamiltonian of the
coupled system, we find that there is only one eigenvector
ði; 1ÞT . In an isolated Hermitian system, coupled modes or
energy levels will repel each other and the levels will never
cross, which is called anti-crossing. In such a non-Hermi-
tian system, the two levels coalesce to one level, although
they are not degenerate and the two-dimensional system is
reduced to one[18], which has been observed in coupled mi-
crocavities[19] and coupled waveguides[20] with loss-gain.
Here we show that coupled waveguides with only loss also
have this phenomenon.

Another important change induced by the UBL is the
increase of the oscillation periods of the intensity lines,
compared to the ideal case. In Fig. 2(a), the increase of
the oscillation periods means the coupling strength be-
tween the waveguides has been weakened by the loss dif-
ference Δγ. For example, to get a 1:1 BS, a longer coupling
length is required. Figure 2(d) gives the relation between
the minimum coupling length L0 for a 1:1 BS and the UBL
Δγ. We can conclude that the effective coupling strength is
weakened by the unbalanced linear independent loss. Note
that γ1 ¼ γ2 is the zero point in the curves in Fig. 2, which
behaves the same with the ideal case, except for the decay
of the total energy.

In quantum optics, the interference of indistinguishable
photons in a waveguide circuit is very sensitive to the
phase relation between different input and output ports,
which reflects in the phase difference between different
elements of the process matrix MðLÞ. One basic process
to test the quantum nature of the circuit is HOM interfer-
ence[21]. By injecting two indistinguishable photons from
the inputs, we can calculate the second-order quantum
correlation Γq of the output state. Comparing the quan-
tum correlation with the classical correlation Γc, the con-
trast can be used to measure the performance of the BS for
quantum operation. Here, we use visibility V to character-
ize the performance of a BS in quantum optics,

V ¼ 1− Γq∕Γc: (8)

From Eq. (6), we can calculate the second-order
classical and quantum correlation haout†1 aout1 aout†2 aout2 i of
the output state as

Γc ¼ jM 11M 22j2 þ jM 12M 21j2; (9)

Γq ¼ jM 11M 22 þM 12M 21j2; (10)

As is shown in Fig. 2(e), the visibility of an ideal coupler
oscillates between 0 and 1 periodically, with the increasing
of the coupling length L of the BS. However, in the case
with UBL, the adjusted phase relation makes the quantum
interference different. The relation between visibility and
coupling length is plotted in Fig. 2(f). Two main obvious
differences can be found, (1) the period of oscillation
becomes large, which is consistent with the result of

Fig. 2. (Color online) Two coupled waveguides with an unbal-
anced linear loss. (a) By injecting a single photon in port 1 in
Fig. 1(a), the hopping probability to the outputs are plotted.
Blue line: port 1. Red line: port 2. The inset shows the relative
intensity eliminating the global damping factor. We set
C ¼ 0.01k0 and Δγ ¼ 0.01k0. (b) The mode overlap jhþj−ij2
of the two eigenmodes. (c) The real (blue) and imaginary
(red) part of the difference between βþ and β−. The cross point
is the exceptional point. (d) L0 is the minimum coupling length to
achieve 1:1 splitting. (e). Two-photon quantum interference vis-
ibility on an ideal BS with C ¼ 0.01k0. (f) Two-photon quantum
interference visibility on a BS with unbalanced linear loss as a
function of the coupling length. C ¼ 0.01k0 and Δγ ¼ 0.01k0.
In all the figures, the units of C and γi are the free-space wave
vector k0. We set C ¼ 0.01k0 for all the cases.
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single-photon analysis, (2) the visibility appears to be neg-
ative in some coupling regions. This result is totally differ-
ent from the HOM interference on an ideal BS, in which
case the second-order quantum correlation is always
smaller than the classical correlation. As the loss difference
Δγ approaches the exceptional point, the second-order
quantum correlation becomes twice the classical correla-
tion, thus the visibility gets its minimum value −1. An
HOM dip can never be observed at the point, and a peak
is observed instead. The reason is that loss destroyed the
orthogonality of the non-Hermitian system, so quantum
coherence cannot be fully maintained in these devices.
From the analysis for single- and two-photon states, we

can conclude that the UBL not only influences the effi-
ciency of the integrated circuit but also changes the func-
tion of the circuit. On one hand, the effective coupling
strength is weakened by the loss difference. As a result,
a larger circuit should be designed to realize the same op-
eration. On the other hand, the impacted phase relation
leads to extraordinary interference for both the classical
and quantum field. For waveguides with UBLs, the energy
cannot be exchanged between the two waveguides with
complete coherence. So, when designing integrated devices
for quantum operation, the loss difference between differ-
ent waveguides should be carefully controlled, especially
for waveguides with very weak coupling strengths.
In the above paragraph, we discussed the effect of the

UBL, while the coupling rate C between the waveguides is
still real. However, there exists some cases that the cou-
pling constant C is a complex number because the two
coupled waveguides not only couple in the regime of
the direct overlap of their modes, but also through the res-
ervoir in the surrounding material, such as in a plasmonic
circuit. To study such an effect, we add an imaginary part
iC2 to the real coupling constant C1. Similar to the pro-
cedure in the UBL case, we calculate the transfer matrix
elements in the CL case, where the probabilities still oscil-
late in the form of a sine function with opposite phase
[shown in Fig. 3(a)]. The oscillations get less pronounced
with an increasing L. As the coupling length becomes large
enough, the two curves tend to merge to a single
line and the splitting ratio of the BS approaches 1:1.
Figures 3(b) and 3(c) show the properties of the eigenm-
odes of the CL case. Figure 3(b) indicates that the two
eigenmodes are still orthogonal. The altered effective
mode index is plotted in Fig. 3(c).
We then examine the quantum performance of the two

coupled waveguides with CL by calculating the visibility.
As is shown in Fig. 3(d), the V of the two-photon inter-
ference decreases from 1 to −1, with the coupling length
increasing to infinity. This arises because the two eigenm-
odes of the coupled system decrease with different rates,
and the system acts as a filter. When L becomes large
enough, the mode with a bigger loss can be neglected com-
pared to the other one, thus any photon will be found with
equal probability in each waveguide. To explain the vis-
ibility of −1, we consider the nonHermitian system as a
subsystem of a higher-dimensional Hermitian system,

where the process matrix M is only a submatrix of a uni-
tary process, by including all environmental degrees of
freedom [Eq. (6)]. The bunching nature of the photons
causes Γq ¼ 2Γc when L becomes infinitely large, which
leads V to be −1. Under this situation, V can be treated
as a feature of the degree of non-unitary of the process
matrix. The CL loss is responsible for the low quantum
interference visibility in plasmonic circuits[22], which can
be avoided using dielectric loaded circuits[9]. Recently,
HOM interference showing a peak fringe was experimen-
tally observed in the plasmonic system[23].

We then go further to investigate how such loss
influences the quantum operation of a relatively large cir-
cuit formed by BSs and phase shifters. On a real inte-
grated optical chip, the shared loss appears to be more
influential. From simple to complex, we calculated the
fidelity of single-qubit operation, C-NOT gate, and arbi-
trary two-qubit gate suffering from shared loss. Following
the quantum gate decomposition method, these gates are
decomposed to BSs and phase shifters. Here, we replace
the ideal BSs with BSs suffering from shared loss. The
fidelity F of the gate is defined as

F ¼ minjΦi;U
������������������������������������������������
hΦjU †BjΦihΦjB†UjΦi

q
; (11)

where jΦi is the input state, U is the unitary operation of
the ideal circuits, B is the real quantum operation using a
BS with losses. The fidelity F is searched among all the
input states and quantum operations. Here, we change
the relative value of C2 to evaluate the fidelity of quantum
gates. From Figs. 4(a) and 4(b), we see that the fidelity
decreases fast as the imaginary part of C gets comparable
to its real part. The comparison between quantum gates
shown in Figs. 4(a) and 4(b) also indicates that the circuit

Fig. 3. (Color online) Single-photon and two-photon interfer-
ence on a BS with shared CL. (a) Relative probability in two
waveguides with single-photon input. (b) The mode overlap
jhþj−ij2 of the two eigenmodes. (c) The real and imaginary part
of βþ − β−. (d) The visibility of two-photon quantum interfer-
ence. The visibility becomes negative and approaches −1 as
the coupling region becomes longer. Here we set the damping rate
the waveguides γ ¼ 0.001k0, C1 ¼ 0.01k0, and C2 ¼ 0.0005k0.
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complexity is very sensitive to the imaginary part of the
coupling rate. To achieve fidelity of the two-qubit gate
higher than 99%, C2 < 2.5 × 10−4C1 should be ensured.
For larger quantum circuits, the dependence on C2 will
be more sensitive. So when dealing with large-scale circuits
supported by absorptive materials, reasonable design and
quantum error correction should attract much more atten-
tion to avoid such shortcomings.
In conclusion, we investigate the performance of a real-

istic coupled waveguide system, which is the basic element
in quantum PICs. As an inevitable factor in reality, loss is
a block in the way of integrating optics on-chip on a large
scale. Apart from its harmful effect on the efficiency, loss
also changes the physical process. By analyzing the prop-
erties of the eigenmodes and evaluating the second-order
coherence of two-photon quantum interference, we quan-
tify the performance of the coupled system. We find that
unbalanced linear loss can weaken the effective coupling
strength and destroy the orthogonality of the coupled
waveguides. Both the unbalanced linear loss and the com-
plex coupling between two identical waveguides result in a
reduction of the visibility of the quantum interference. All
these imperfections should be considered when designing
and fabricating large-scale quantum PICs.
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Fig. 4. (Color online) Fidelity of quantum gates formed by a BS
with shared loss. All quantum gates are decomposed to BSs and
phase shifters and we assume the phase shifters are ideal. The
fidelity is the minimum value searched through all input quan-
tum states. (a) The gate fidelity for a BS, single-qubit operation,
and quantum C-NOT gate. (b) The minimum fidelity for any
two-qubit gate and any two-qubit quantum state. In the calcu-
lations, C1 ¼ 0.01k0.
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