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Reflective fiber optic sensors have advantages for surface roughness measurements of some special workpieces,
but their measuring precision and efficiency need to be improved further. A least-squares support vector machine
(LS-SVM)-based surface roughness prediction model is proposed to estimate the surface roughness, Ra, and the
coupled simulated annealing (CSA) and standard simplex (SS) methods are combined for the parameter opti-
mization of the mode. Experiments are conducted to test the performance of the proposed model, and the results
show that the range of average relative errors is −4.232%–2.5709%. In comparison with the existing models, the
LS-SVM-based model has the best performance in prediction precision, stability, and timesaving.
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Quantitative estimations of surface roughness can be real-
ized by different methods, such as a stylus[1], image-based
spectral correlation[2], speckle[3], and optical scattering[4–8].
Since the optical scattering method can make use of small
and flexible fiber optic sensors[4,8], it is more suitable for
internal surface roughness measurements of small work-
pieces or complex structures. Based on the Beckmann
scattering model[9], the surface roughness can directly be
calculated by the scattering-to-specular or specula-to-
total light intensity ratio. Also, the model can be used
as a fitting model for precalibration[10,11].
The Beckmann scattering model is established on the

scalar scattering theory, so it cannot accurately character-
ize the nonlinear relationship between the light intensity
ratio and surface roughness. Worse, measuring uncer-
tainty may further amplify the final error. For example,
Refs. [10,11] provide a maximum relative error larger than
10%. To better solve the nonlinear problem, some surface
roughness prediction models are proposed, such as the
back-propagation neural network (BPNN) model[12,13],
and the support vector machine (SVM) model[14]. How-
ever, the BPNN has some disadvantages, such as getting
stuck easily in local minima and a long training time, as
well as especially poor generalization when solving practi-
cal problems with few samples[15,16]. The SVM using
gridregression.py for parameter optimization in Ref. [14]
requires a long computation time. The least-squares
(LS) SVM[17] is a reformulation of the standard SVM[18],
which lead to solving linear Karus–Kuhn–Trucker
(KKT) systems. In contrast to BPNN and SVM, the
LS-SVM model requires shorter calculation times and
has a more powerful computational ability in solving
the nonlinear and small sample problems. In this Letter,
an LS-SVM-based surface roughness prediction model is

proposed by combining the coupled simulated annealing
(CSA) and standard simplex (SS) methods. To the best
of our knowledge, it has the best prediction performance
among the reported models.

When a surface is irradiated by a laser beam, the inci-
dent light is scattered. Assuming that the surface absorp-
tion of the light is negligible, some of the scattered light,
following the law of geometrical optics, reflects in the
specular direction, and the other portion is scattered into
space in all directions. According to Beckmann’s theory, if
the incident light is vertical to the surface, the relationship
between the relative value of the scattered light intensity
I , the scattering angle θ2, and the surface profile’s RMS
deviation Rq can be described as[19]
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where λ is the wavelength of the incident light, 2L is the
surface length, and T is the correlation length of the
surface. This relation can also be described as

I ¼ I o
I i

; (2)

where I o is the scattering light intensity, and I i is the re-
flected light intensity in the specular direction, as the light
is incident on an ideal flat surface. Since it is difficult to
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obtain an ideal flat surface, usually, I i is replaced by the
incident light intensity.
For the same surface, the relationship between Rq and

Ra can be approximated as a linear function, and L and T
can also be treated as constants. Additionally, for the
same incident light condition, λ is a constant. Since the
light intensity is the light power of the per unit area,
the above derivation shows that the relative light power
is a unary nonlinear function of Ra, and Eq. (1) can be
simplified into

Po

Pi
¼ f ðRaÞ; (3)

where Po is the power of the scattered light, and Pi is the
power of the incident light.
The schematic in Fig. 1 shows the principle of measur-

ing the surface roughness through the reflective fiber optic
sensors. When the incident laser light arrives at the mea-
sured surface through the transmitting fiber, the incident
light is scattered. This surface-scattering light enters
the receiving fiber, and the light power is measured by
a detector[20]. Although the receiving fiber may not receive
all of the scattered light, the above analysis indicates that
under certain measurement conditions and within the
same receiving angular range, the ratio between the re-
ceived light power and the incident light power is related
to Ra. Therefore, the surface roughness Ra is represented
by the ratio.
It is assumed that xi is the aforesaid power ratio for the

ith test point on the measured surface, and yi is the rough-
ness value of the point, where i ¼ 1; 2;…;N . The combina-
tion of (xi , yi) provides the training sample set for the
LS-SVMmodel. The task of the LS-SVM-based roughness
prediction model is to determine the nonlinear relation-
ship between yi and xi :

yi ¼ f ðxiÞ: (4)

Based on the theory of SVM, the following model is con-
structed by using the nonlinear mapping function ϕðxÞ,

which maps the input space to a higher dimensional space,

f ðxÞ ¼ ωTϕðxÞ þ b; (5)

where b is offset, and ω is weight vector of the same dimen-
sions as the feature space.

The values of ω and b can be obtained via minimizing
the following regularized cost functions:

min Jðω; eÞ ¼ 1
2
ωTωþ γ

2

XN
i¼1

e2i ; (6)

subject to yi ¼ ωTϕðxiÞ þ bþ ei ; (7)

where γ is a regularization parameter, ei is the e-insensi-
tive error, and b is a constant bias. The above constrained
optimization problem can be converted into an uncon-
strained optimization problem by constructing the
Lagrange function as

Lðω; b; e; αÞ ¼ Jðω; eÞ−
XN
i¼1

αi ½ωTϕðxiÞ þ bþ ei − yi �;

(8)

where αi is the Lagrange multiplier. The conditions for op-
timality are given by partially differentiating with respect
to each variable. Eliminating ω and e, the KKT system is
obtained as
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where 1l ¼ ½ 1 1 … 1 �T , a ¼ ½ a1 a2 … aN �T ,
Y ¼ ðy1; y1;…; yN Þ. Ω is the kernel function, defined as

Ωi;j ¼ ϕðxiÞT · ϕðxjÞ ¼ Kðxi ; xjÞ: (10)

Here, j ¼ 1; 2;…;N .
When a and b are resolved using Eq. (9), the LS-

SVM-based surface roughness prediction model can be
obtained as

f ðxÞ ¼
XN
i¼1

aiKðx; xiÞ þ b; (11)

and after the model is trained with a training sample set,
the surface roughness can be calculated by the received-
to-incident light power ratio x in the testing sample set
and Eq. (11).

The radial basis function (RBF) [Eq. (12)] is selected as
a kernel function due to its high regression precision,

Kðx; xiÞ ¼ exp
�
ð−‖x − xi‖2Þ∕σ2

�
; (12)

where σ2 is the kernel width of the RBF.
Fig. 1. Schematic diagram of surface roughness measurement
using reflective fiber optic sensors.
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Because the tuning parameters, γ and σ2, influence the
performance of the LS-SVM model, their values should be
optimized in advance. The CSA algorithm is introduced
here to globally search a relatively good initial value.
Then, the SS algorithm is used for a finer search in the
neighborhood of the initial value[21].
In detail, the steps of the surface roughness prediction

are as follows:
(1) Acquiring sample data, which include the training

sample set and testing sample set described above.
(2) Setting the tuning parameters, γ and σ2.
(3) Establishment of the surface roughness prediction

model. The model parameters a and b in Eq. (9) are
solved by identifying the training sample set and then
substituted into Eq. (11) to obtain the model.

(4) Calculation of the surface roughness and prediction
errors. The input values of the test sample set are
substituted into the prediction model to obtain the
prediction of the surface roughness, which is then
compared with the expected result to calculate the
prediction error.

In order to acquire the sample data of the LS-SVM
mode, the surface roughness measuring system is designed
as shown in Fig. 2. The fiber optic probe is fixed on an
adjustable XYZ displacement platform and perpendicular
to the surface of the specimen. An amplified spontaneous
emission (ASE) light source[22,23] with a 1550 nm working
wavelength is chosen as the light source for its good output
power stability. The optical power meter detecting the
light power has �0.02 dB linearity and a 0.01 dB display
resolution. The coaxial fiber bundle structure is chosen be-
cause it has the advantage of stability of measurement
compared with the noncoaxial fiber bundle when the
working distance between the probe and the measured
surface is the peak interval of the light intensity modula-
tion curve. Figure 3 displays the end-face structure of the
fiber optic probe. The central fiber is the transmitting
fiber, and the six fibers surrounding it are receivers. Both
the transmitting and receiving fibers are multimode fibers
with a 105 μm core diameter and a 0.22 numerical
aperture.

Standard specimens with nonplanar rough surfaces
are used as measured objects, which are machined by in-
ternal grinding and circular grinding with four levels. The
light intensity modulation curve of the fiber bundle
shows that the reflected light intensity is the most sensi-
tive to the change of the surface roughness at the peak
point[10,24]; therefore, the abscissa of the point obtained
by repeated tests is used as the working distance between
the probe and the measured surface, which is 0.87 and
0.91 mm for the internal and circular grinding specimens,
respectively.

In the experiment, 40 different points for each specimen
are measured in the X–Y plane. Half of the measured
points are used as the training sample set.

To verify the advantages of the LS-SVM model, BPNN
and SVM are used for comparison. The three modes are
implemented using the LS-SVMlab1.8 toolkit (http://
www.Esat.kuleuven.be/Sista/lssvmlab/), the LIBSVM
toolbox (https://www.csie.NTU.edu.tw/~cjlin/libsvm/),
and the BPNN toolbox of MATLAB software, respec-
tively. All calculations were performed using MATLAB
7.8.0, which are done on an Intel core (TM) M-5Y10c
0.80 GHz with 8GB RAM.

A three-layer BPNN model is used for its good perfor-
mance in predicting nonlinear relationships[25]. Based on
the Kolmogorov theorem, the calculated numbers of the
hidden layer neurons are 2 to 11. The chosen number is
10 according to the optimal result from the simulations
of the total of 10 different numbers of hidden layer neu-
rons. The input function, training function, and output
function are logsig, traingdx, and purelin, respectively.
The number of iterations is set at 200.

For the LS-SVMmodel, the optimized parameter values
for γ/σ2 are 188585.755/0.0181 and 60.659/0.0419 for the
internal and circular grinding specimens, respectively. For
a fair comparison, the kernel function for the SVM model
is the same as that of the LS-SVM model. As described in
Ref. [15], the optimal values for the unspecified parame-
ters (the optimal penalty parameter c, the number of
attributes g, and the epsilon in the loss function p) are
searched automatically with gridregression.py. They are
64, 32, 0.000977 and 1024, 32, 0.0313 for the internal
and circular grinding specimens, respectively.

The prediction accuracy and stability of three models
are quantitatively evaluated by the mean surface rough-
ness (MRa), mean relative error (MRE), and standard
deviation (SD). They are defined as follows:Fig. 2. Measuring system.

Fig. 3. End-face structure of fiber optic probe.
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MRa ¼
1
N

XN
i¼1

Rai; (13)

MRE ¼
�
1
N

XN
i¼1

Rai − RaN

RaN

�
× 100%; (14)

SD ¼
�����������������������������������������������

1
N − 1

XN
i¼1

ðRai − RaÞ2
vuut ; (15)

where Rai is the predicated roughness value for the ith test
point, N is the number of test samples, RaN is the nominal
roughness value of the surface roughness specimen, and R̄a

is the average surface roughness for all test points.
Table 1 lists the prediction performance of 20 test points

for each specimen, and the bold font indicates the optimal
results. On the whole, the LS-SVM model exhibits the
highest prediction accuracy and best prediction stability.
The exception is for the internal grinded roughness
specimen of 1.6 μm and the circular grinded roughness
specimen of 0.4 μm, where the SVMmodel obtains a better
prediction result and prediction stability, respectively. For
the circular grinded specimen with a roughness value of
0.1 μm, the minimum relative error of the LS-SVM predic-
tion reaches 0.0006%. The above results can be explained
by the fact that the BPNN model tends to overfit the
training data and entrap the local minimum, and the
SVM only selects some sparse training samples to build
the model, while the LS-SVM model can effectively avoid
overfitting and trapping local minima by combining the
CSA and SS methods and uses all training samples to
build the model. So, the LS-SVM can find a better
approximation model.
Table 2 compares the parameter optimization time

(POT), the operation time (OT), and the total prediction
time (TPT). The OT refers to the runtime of the surface
roughness prediction program in MATLAB after the
parameters have been optimized, and the TPT refers to

the sum of the POT and the OT. Parameter optimization
using the gridregression.py function consumes more time
due to its computation complexity for specimens with in-
ternal grinding and circular grinding, which are 903900 and
1503600, respectively. The LS-SVM POT is only 2.13500 and
2.04700. The BPNN POT in Table 2 is the time required for
the 10 iterations to determine the number of hidden layer
neurons. From the perspective of OT, the LS-SVM
method is the fastest, then the SVM method, and the
BPNN method is the slowest. The reason is that the con-
vergence speed of an SVM is faster than a conjugate-
gradient-based neural network; additionally, the LS-
SVM model converts the convex quadratic programming
problem in the SVMmodel into a linear equation set; thus,
the computational efficiency is improved. Overall, the
LS-SVM method is the fastest.

Table 1 shows that the results of the roughness predic-
tion for internal grinded surfaces are more stable than
those for circular grinded surfaces. This can be explained
by comparing the sample set input data for these two ma-
chining specimens. The experiment is conducted by a fixed
incident light power. The receiving light power of circular
grinded specimens has a larger overall variation than that
of the internal grinded specimens. The variation is mainly
due to the following reasons:

Table 1. Experimental Results Comparison

LS-SVM BPNN SVM

Processing
Methods

Ra
(μm)

MRa
(μm)

MRE
(%)

SD
(μm)

MRa
(μm)

MRE
(%)

SD
(μm)

MRa
(μm)

MRE
(%)

SD
(μm)

Internal Grinded 1.6 1.5963 −0.2280 0.0137 1.6061 0.3870 0.0125 1.6005 0.0312 0.0015

0.8 0.7957 −0.5340 0.0096 0.7896 −1.2963 0.0274 0.7416 −7.2940 0.0879

0.4 0.4002 0.0534 0.0006 0.3882 −2.9266 0.0164 0.4098 2.4622 0.0151

0.2 0.1999 −0.0440 0.0002 0.2079 3.9568 0.0073 0.2002 0.1135 0.0039

Circular Grinded 0.8 0.8008 0.1034 0.0470 0.8100 1.2560 0.0539 0.7682 −3.9790 0.0731

0.4 0.4102 2.5709 0.0855 0.4231 5.7797 0.1018 0.4204 5.0916 0.0578

0.2 0.1915 −4.2320 0.0108 0.2109 5.4714 0.0118 0.2215 10.7345 0.0520

0.1 0.1000 0.0006 0.0002 0.0996 −0.3088 0.0064 0.1069 6.8799 0.0039

Table 2. Time Comparison

Processing
Methods

Parameter LS-SVM
(s)

BPNN
(s)

SVM
(s)

Internal Grinding POT 2.135 16.938 399.346

OT 0.026 1.717 0.167

TPT 2.161 18.655 399.513

Circular Grinding POT 2.047 17.406 936.231

OT 0.052 1.947 0.573

TPT 2.099 19.353 936.804
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(1) The measurement error caused by the change of the
distance between the end face of the fiber optic sensor
and the measured surface roughness specimen. Ac-
cording to the light intensity-modulation curve of
the fiber bundle, the change of distance has an impact
on the received power when the incident light power is
fixed. Some factors, such as nonflat standard speci-
mens or a nonflat plane on which the standard spec-
imens are placed, affect the received light power.

(2) The transmitting fiber is a multimode fiber. Since a
multimode fiber is unstable, even slight bending or vi-
brations of the transmitting fiber will alter the light
transmission property and then affect the receiving
light power.

(3) Different levels of cleanliness of the specimen surface
may also have an effect on the light scattering.

In conclusion, this Letter conducts a theoretical analysis
on the nonlinear relationship between the received-
to-incident light power ratio and the surface roughness.
By combining the CSA and SS methods, the LS-SVM
is introduced to establish a surface roughness prediction
model and is verified by the experiment. The results
show that the average relative prediction error of the
LS-SVM is −4.232%–2.5709%. The errors of the tradi-
tional BPNN and SVM are −2.9266%–5.7797% and
−7.2940%–10.7342%, respectively. The LS-SVM method
has the best prediction capability among the compared
methods and provides a new approach for predicting ma-
chined surface roughness using fiber optic sensors.

The authors gratefully acknowledge Prof. Dr. Chih-Jen
Lin for the LIBSVM toolbox and Prof. Dr. J. Suykens for
the LS-SVMlab1.8 toolkit.
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