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In optical studies on layered structures, quantitative analysis of radiating interfaces is often challenging due to
multiple interferences. We present here a general and analytical method for computing the radiation from
two-dimensional polarization sheets in multilayer structures of arbitrary compositions. It is based on the
standard characteristic matrix formalism of thin films, and incorporates boundary conditions of interfacial
polarization sheets. We use the method to evaluate the second harmonic generation from a nonlinear thin film,
and the sum-frequency generation from a water/oxide interface, showing that the signal of interest can be
strongly enhanced with optimal structural parameters.
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Multilayer structures of thin films are indispensable in
modern technology and scientific research[1–5]. In such
structures, interfaces often play a key role: they give rise
to desirable electronic and optoelectronic functions[6], and
are the host of many novel phenomena[7]. Across the inter-
faces, the broken symmetry often causes a net polar order-
ing, which is readily monitored by surface-specific optical
techniques. For example, second-order nonlinear optical
processes such as second harmonic generation (SHG)
and sum-frequency generation (SFG) can be highly sur-
face sensitive for centrosymmetric media, and are widely
employed in interfacial studies[8–12]. Experimentally, the
optical signal depends on both the interfacial polarizations
and local electric fields[13,14]. Yet, due to the coexistence of
multiple interfaces and the interference between multiply
reflected beams[15], it is often challenging to perform quan-
titative analysis[16,17].
In this study, we introduce a method for computing the

radiation from interfacial polarization sheets in multi-
layer structures. Our method is based on the standard
characteristic matrix formalism of thin films[16,17], and
incorporates boundary conditions of electromagnetic
fields due to such polarization sheets[18]. It yields the
contribution of each individual interface, and applies
to multilayer structures of arbitrary composition. With
this analytical approach, we can easily choose appropri-
ate structural parameters to selectively boost up or
suppress responses from specific locations. We present
here two practical examples showing that appropriate
geometries can strongly enhance the response from thin
films or interfaces of interest. This method is not limited
to nonlinear optical studies, but is generally applicable
for optical probes of radiating polarization sheets in such
structures, for example, the photoluminescence from

two-dimensional (2D) transition metal dichalcogenides
in a field-effect transistor[19].

We first consider radiation from the polarization sheet
on top of a thin film, as illustrated in Fig. 1(a). A thin film
of refractive index n2 is sandwiched between two semi-
infinite media, n1 and n3. Assuming an oscillating 2D
polarization sheet of polarization PsðωÞ at frequency ω
is excited by beams incident from medium 1 and overlap-
ping at boundary I [inset of Fig. 1(a)]. To find the electric
field EðωÞ generated by PsðωÞ in media 1 and 3, we employ
boundary conditions of electromagnetic fields by using a
2D polarization sheet[18]. At boundary I

ΔEx ¼ σz ¼ −
4π
ϵ0

ikxPsz ;

ΔEy ¼ 0;

ΔHx ¼ σy ¼ −
4πi
c

ωPsy;

ΔHy ¼ σx ¼
4πi
c

ωPsx ; (1)

where ϵ0 is the effective dielectric constant of the interfa-
cial layer[13], i is the square root of −1, k ¼ ω∕c is the light
wave vector in a vacuum, and the lab coordinates (x; y; z)
are set with z parallel to the surface normal (n̂) and x–z is
the beam incident plane [inset in Fig. 1(a)]. σ is the dis-
continuity in the electromagnetic field caused by PsðωÞ.
For simplicity, we use the same symbol to represent differ-
ent quantities in different cases. We define σE ≡ 0 and
σH ≡ σy for TE waves, and σE ≡ σz and σH ≡ σx for TM
waves[18]. So, across boundary I , the relation between tan-
gential components of the fields can be written as
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EI ;1 þ σI ;E ¼ EI ;2; HI ;1 þ σI ;H ¼ HI ;2; (2)

where EI ;i (HI ;i) denotes the electric (magnetic) field in-
side the ith medium near boundary I . We denote the di-
rection pointing from medium 1 to 3 as transmitted (T),
and the other as reflected (R) [inset of Fig. 1(a)]. EðωÞ
then has both T and R components in medium 2, but only
the R component in medium 1, and the T component in
medium 3. So inside medium 2, at boundary I ,

EI ;2 ¼ ER
I ;2 þ ET

I ;2: (3a)

Since H ¼ nk× E, we have

HI ;2 ¼ ðET
I ;2 − ER

I ;2Þn̄2; (3b)

where we define n̄j ¼ nj cos βj for TE waves, and n̄j ¼
nj∕ cos βj for TM waves, with ni being the refractive index
(complex in general) and βi the beam refraction angle at ω
in the ith medium. Combining Eqs. (2) and (3), we have

EI ;1 þ σI ;E ¼ ER
I ;2 þ ET

I ;2;

HI ;1 þ σI ;H ¼ ðET
I ;2 − ER

I ;2Þn̄2;

which can be written in the matrix form

�
EI ;1 þ σI ;E
HI ;1 þ σI ;H

�
¼

�
EI ;2
HI ;2

�
¼

�
1 1
n̄2 −n̄2

��
ET

I ;2

ER
I ;2

�
: (4a)

At boundary I I , inside medium 2, the electric fields
propagating along different directions are related to
those at boundary I by ET

I ;2 ¼ ET
II ;2 expð−iδ2Þ and

ER
I ;2 ¼ ER

II ;2 expðiδ2Þ, where δ2 ¼ n2k cos β2d2 is the
propagation phase and d2 is the thickness of medium 2.

The matrix form is

�
ET

I ;2

ER
I ;2

�
¼

�
expð−iδ2Þ 0

0 expðiδ2Þ
��

ET
II ;2

ER
II ;2

�
: (4b)

Toward medium 3, with no free charge, dipole, or cur-
rent at the boundary, the tangential components of the
fields across boundary I I are related by

�
EII ;3
HII ;3

�
¼

�
EII ;2
HII ;2

�
¼

�
1 1
n̄2 −n̄2

��
ET

II ;2

ER
II ;2

�
: (4c)

Together, Eqs. (4a)–(4c) yield

�
EI ;1 þ σI ;E
HI ;1 þ σI ;H

�
¼

�
cos δ2 −

i sin δ2
n̄2

−in̄2 sin δ2 cos δ2

��
EII ;3
HII ;3

�

¼ M2

�
EII ;3
HII ;3

�
; (5a)

where M2 is the characteristic matrix of medium 2 as
conventionally defined[19,20]. Moreover, since EI ;1 ¼ ER

I ;1,
HI ;1 ¼ −ER

I ;1n̄1 and EII ;3 ¼ ET
II ;3, HII ;3 ¼ −ET

II ;3n̄3,
Eq. (5a) can be rewritten as

�
ER

I ;1 þ σI ;E
−ER

I ;1n̄1 þ σI ;H

�
¼ M2

�
ET

II ;3

−ET
II ;3n̄3

�
: (5b)

This presents essentially two equations for two un-
knowns: ER

I ;1 and ET
II ;3, the reflected signal field in medium

1, and the transmitted field in medium 3, which are exper-
imentally detectable with media 1 and 3 usually being the
air or vacuum. Therefore, given the geometric and optical
properties of all media, the signal fields can be solved from
Eq. (5b) as functions of PsðωÞ.
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Fig. 1. (a) Electric (E) and magnetic (H) fields due to a radiating polarization sheet PS ðωÞ at the boundary I on top of a thin film of
thickness d2. kR and kT are beam wave vectors along the reflected and transmitted directions. Inset: Schematics of a typical exper-
imental setup. (b), (c) Two-layer systems with PSðωÞ at different boundaries. (d) An N -layer system with PS ðωÞ at the ith boundary
between the ith and ði þ 1Þth media. (e) An N -layer system with multiple interfacial polarization sheets.
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As a quick check, we take n2 ¼ n3 so that the system is
equivalent to an oscillating polarization sheet between two
semi-infinite media. For TE waves, for example, Eq. (5b)
yields

ER
I ;1;y ¼

4πiω
c

1
ðn̄1 þ n̄2Þ

·Pð2Þ
sy ;ET

II ;3;y

¼ 4πiω
c

1
ðn̄1 þ n̄2Þ

·Pð2Þ
sy e−iδ2 ;

which are identical with those in Refs. [13,18], and show
the propagation phase in ET

II ;3;y relative to ER
I ;1;y.

We now consider the case when the system is composed
of more than one layer. For example, with an additional
layer below medium 2 [Fig. 1(b)], the tangential fields at
boundaries I I and I I I are connected by

�
EII ;2
HII ;2

�
¼

�
EII ;3
HII ;3

�
¼ M3

�
EIII ;4
HIII ;4

�
; (5c)

with M3 being the characteristic matrix of medium 3.
Combining Eqs. (5a) and (5c), we then have

�
ER

I ;1 þ σI ;E
HR

I ;1 þ σI ;H

�
¼ M2M3

�
ET

III ;4

HT
III ;4

�
: (6a)

If the additional layer is above PsðωÞ, as the in geometry
presented in Fig. 1(c), the tangential fields at boundaries I
and I I I are then connected by

� ER
I ;1

HR
I ;1

�
¼ M2

� EII ;2

HII ;2

�
;

� EII ;2 þ σI I ;E

HII ;2 þ σI I ;H

�
¼

� EII ;3

HII ;3

�
¼ M3

� ET
III ;4

HT
III ;4

�
: (6b)

Again, ER
I ;1 and ET

III ;4 can be readily solved from
Eqs. (6a) and (6b). The above relations can be further
generalized for any multilayer system. Assuming that
the polarization sheet PsðωÞ is at the ith boundary be-
tween the ith and ði þ 1Þth media in a system of N layers,
as illustrated in Fig. 1(d). Based on Eqs. (6a) and (6b), we
have

"
ER

I ;1

−ER
I ;1n̄1

#
¼

�Yi
j¼2

Mj

�" Ei;i

H i;i

#
;

"
Ei;i þ σi;E

Hi;i þ σi;H

#
¼

� YN
j¼iþ1

Mj

�" ET
N ;Nþ1

−ET
N ;Nþ1n̄Nþ1

#
: (7)

Practically all Mi matrices can be computed given
the composition of the multilayer structure. Then from
Eq. (7), the signal fields ER

I ;1 and ET
N ;Nþ1 can be solved

as functions of σi , which is proportional to PsðωÞ.

Now we consider the case when there are more than one
polarization sheets inside the multilayer structure. For ex-
ample, assume there are two polarization sheets at the ith
and jth boundaries [Fig. 1(e)], respectively. The total
fields generated satisfy the equations

� ER
I ;1

HR
I ;1

�
¼ M2 � � �Mi

� Ei;i

H i;i

�
;

� Ei;i þ σi;E

Hi;i þ σi;H

�
¼ Miþ1 � � �Mj

� Ej;j

H j;j

�
;

� Ej;j þ σj;E

Hj;j þ σj;H

�
¼ Mjþ1 � � �MN

� ET
N ;Nþ1

HT
N ;Nþ1

�
: (8a)

Considering only the electric field generated by the ith
polarization sheet, then we have

"
E 0

I ;1

H 0
I ;1

#
¼ M2 � � �Mi

"
E 0

i;i

H 0
i;i

#
;

"
E 0

i;i þ σi;E

H 0
i;i þ σi;H

#
¼ Miþ1 � � �Mj

"
E 0

j;j

H 0
j;j

#
;

"
E 0

j;j

H 0
j;j

#
¼ Mjþ1 � � �MN

"
E 0

N ;Nþ1

H 0
N ;Nþ1

#
: (8b)

Similarly, the electric field generated by the jth polari-
zation sheet is

"
E 00

I ;1

H 00
I ;1

#
¼ M2 � � �Mi

"
E 00

i;i

H 00
i;i

#
;

"
E 00

i;i

H 00
i;i

#
¼ Miþ1 � � �Mj

"
E 00

j;j

H 00
j;j

#
;

"
E 00

j;j þ σj;E

H 00
j;j þ σj;H

#
¼ Mjþ1 � � �MN

"
E 00

N ;Nþ1

H 00
N ;Nþ1

#
; (8c)

respectively. By summing up the corresponding equations
in Eqs. (8b) and (8c), we have

"
E 0

I ;1 þ E 00
I ;1

H 0
I ;1 þ H 00

I ;1

#
¼ M2 � � �Mi

"
E 0

i;i þ E 00
i;i

H 0
i;i þ H 00

i;i

#
;

"
E 0

i;i þ E 00
i;i þ σi;E

H 0
i;i þ H 00

i;i þ σi;E

#
¼ Miþ1 � � �Mj

"
E 0

j;j þ E 00
j;j

H 0
j;j þ H 00

j;j

#
;

"
E 0

j;j þ E 00
j;j þ σj;E

H 0
j;j þ H 00

j;j þ σj;E

#
¼ Mjþ1 � � �MN

"
E 0

N ;Nþ1 þ E 00
N ;Nþ1

H 0
N ;Nþ1 þ H 00

N ;Nþ1

#
:

(8d)

Clearly, Eq. (8d) is equivalent to Eq. (8a), with
ER

I ;1 ¼ E 0
I ;1 þ E 00

I ;1. Therefore, we verify that the overall
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signal is the superposition of those from the individual
sheets. One can either solve the total fields directly from
Eq. (8a), or first calculate them from each polarization
sheet, and then get the total fields by summing them
up [Eqs. (8b)–(8d)]. As the contribution from each indi-
vidual sheet is obtained analytically, we can then design
the multilayer structure to selectively boost up and/or
suppress responses from specific positions. When there
are steps and terraces on the surface, if the scattering is
not significant, it can be modeled as an ensemble of films
with various thickness; and given the thickness distribu-
tion, we can still apply the same method to estimate
the local electric fields. In the following, we present two
practical examples as a demonstration.
Thin films of nonlinear optical materials are commonly

used for reference signal generation, upconversion
detection, etc.[21–23]. Compared to bulk nonlinear crystals,
thin films can support a much greater bandwidth,
but may suffer from low efficiency due to the limited
beam interaction length. Nonetheless, we can also
increase the local electric field with appropriate film
thicknesses with the interference. In the following
example, we calculate the second harmonic (SH) fields
generated by a nonlinear thin film of thickness d depos-
ited on a dielectric substrate. We assume that the funda-
mental beam ω is incident from the air side at 45° and
generates SH beams at 2ω [Fig. 2(a)]. At position z 0 inside
the film, the nonlinear polarization at 2ω in a slab of
thickness d is[24]

dPð2Þ
S ð2ω; z 0Þ ¼ Pð2Þ

B ð2ω; z 0Þdz 0

¼ χ
↔ð2Þ
B ð2ω; z 0Þ:Eðω; z 0ÞEðω; z 0Þdz 0; (9)

where χ
↔ð2Þ
B is the bulk second-order nonlinear susceptibil-

ity of the material. The total response is the integration of
that from all dPð2Þ

S ð2ω; z 0Þ along the z direction. The local
strength of the input field Eðω; z 0Þ can be calculated from
the standard characteristic matrix formalism[16,19,20]. The

signal fields generated by dPð2Þ
S ð2ω; z 0Þ outside the film

can be obtained using Eq. (9), that is

�
dER

a ðz 0Þ
−dER

a ðz 0Þn̄a

�
¼ Mf ðz 0Þ

� dEf ðz 0Þ
dHf ðz 0Þ

�
;

� dEf ðz 0Þ þ dσEðz 0Þ
dHf ðz 0Þ þ dσH ðz 0Þ

�
¼ Mf ðd − z 0Þ

�
dET

s ðz 0Þ
−dET

s ðz 0Þn̄s

�
; (10)

where dσðz 0Þ are related to dPð2Þ
S ð2ω; z 0Þ as in Eq. (1), and

subscripts a, f , and s stand for air, film, and substrate,
respectively. Mf ðz 0Þ is the characteristic matrix of the
layer between the air/film interface and the polarization
sheet at z 0, andMf ðd − z 0Þ equals that of the layer between
z 0 and the substrate [Fig. 2(a)]. We can then obtain
dER

a ðz 0Þ and dET
s ðz 0Þ by solving Eq. (10). For simplicity,

we consider only the TE mode[15,16,24], and we find

dER
a;yðz 0Þ ¼

n̄f cos δd−z 0 − in̄s sin δd−z 0

ϵþ cos δd − iϵ− sin δd
·dσH ;yðz 0Þ;

dET
s;yðz 0Þ ¼

n̄f cos δz 0 − in̄a sin δz0

ϵþ cos δd − iϵ− sin δd
·dσH ;yðz 0Þ;

where ϵþ ¼ n̄an̄f þ n̄f n̄s, ϵ− ¼ n̄an̄s þ n̄2
f , and δz 0 ¼ nf k

cos βf z 0 is the beam propagation phase through a medium
of thickness z 0. The total SH field from the film is:

ER
a;y ¼

Z
d

0
dER

a;yðz 0Þ; ET
s;y ¼

Z
d

0
dET

s;yðz 0Þ:

Numerically, we consider an LiNbO3 film (anisotropy
neglected) on an SiO2 substrate with an excitation cen-
tered at 800 nm (ωc), and a bandwidth of 60 nm, which
corresponds to about a 35 fs pulse duration. Figure 2(b)
presents the ratio between SH intensities from the thin
film (d ≤ 4000 nm) and from a bulk crystal (d → ∞) along
both the reflected and transmitted directions. Strong en-
hancement can be achieved for d ∼ 1000 and ∼3000 nm.
Specifically, the signal can be enhanced by more than
100 times along the reflected direction. The curves are
characterized by oscillations due to the interference be-
tween multiply reflected beams. The small period of
190 nm ∼ 2πc∕ð2ωcnf cos θf Þ is due to the SH beam,
and the large period of 2070 nm ∼ 2π∕Δk ¼ 2π∕jkf zð2ωÞ−
2kf zðωÞj is due to the wave vector mismatch between the
fundamental and SH beams[14]. It is also seen that the small
period oscillation diminishes in thicker films [Fig. 2(b)].
This is because of the beating between different frequency
components, which run out of phase when d increases. The
second example is regarding the sum-frequency (SF) spec-
troscopy on interfaces. In many cases, the moiety of interest
yields very weak signals, such as reaction intermediates[25]

or excited species in ultrafast dynamic studies[26]. So it is
desirable to enhance SF signals without changing the
surface structure of interest. Here, we consider the widely
studied interface between water and SiO2, which has served
as a model system of mineral/water interfaces, but often
suffers from weak SF signals[27]. The proposed structure
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Fig. 2. (a) Schematics of SHG from a nonlinear thin film on a sub-
strate. (b) The calculated ratio between the SH signal from the thin
film and that from a bulk nonlinear crystal versus the film thick-
ness, detected along the reflected (solid line) or transmitted direc-
tions (dashed curve). The incident beam is centered at 800 nmwith
a bandwidth of 60 nm. All beams are TE waves.
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is to sandwich a thin SiO2 layer of thickness d between
water and a dielectric substrate [Fig. 3(a)]. We assume a
P-polarized broadband mid-infrared (IR) beam incident
at the Brewster angle, and an S-polarized near-IR beam
at 800 nm from the water side at 45°, and we probe S-po-
larized SF output from the water side. Figures 3(b) and 3(c)
display the ratio between SF intensities from the water in-
terface with a thin film SiO2 (d ≤ 500 nm), and with a bulk
SiO2 (d → ∞). Two different substrate materials, silicon
[Si, Fig. 3(b)] and cubic zirconia [ZrO2, Fig. 3(c)], were used
and the mid-IR frequency 3300 cm−1 was central to the
OH-stretch vibration regime[26]. It is seen that at
d∼140 nm, the SF signal can be enhanced by about 50
times with the Si substrate, and more than 10 times with
ZrO2. To confirm that the substrate∕SiO2 interface does
not cause complications, we also evaluated its relative con-
tributions (dashed lines), which turned out to be negligible
compared the interface of interest. Finally, we calculated
the spectral dependence of the local field intensity at d ¼
140 nm [Fig. 3(d)], which remains nearly a constant in the
entire OH-stretch vibration regime, so will not cause spec-
tral distortion. Therefore, with the appropriate choice of
substrate material and SiO2 layer thickness, we can effec-
tively enhance SF signals from the SiO2∕water interface.
In conclusion, we present a general and analytical

method to calculate the local electric field across a multi-
layer structure of arbitrary composition that can facilitate
the quantitative analysis as well as geometric optimization

for optical studies on such systems. With two practical ex-
amples, we show that an optimized multilayer structure
can effectively enhance the nonlinear response of interest.

This work was supported by the National Natural Sci-
ence Foundation of China and the National Basic Re-
search Program of China (Nos. 11374065, 11622429,
and 11290161).
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Fig. 3. (Color online) (a) Schematic of SFG from substrate∕
SiO2∕water system. (b), (c) The calculated ratio between the
SF signals from the thin film SiO2∕H2O interface to that
from a bulk SiO2∕H2O interface, versus the SiO2 film thickness
(solid lines). The signal ratio from the substrate∕SiO2 interface is
shown for comparison (dashed lines, magnified for clarity). The
substrate material is assumed to be (b) silicon or (c) cubic zir-
conia. The infrared wavenumber is at 3300 cm−1. (d) The spec-
tral dependence of SF signals from a 140 nm thick SiO2∕H2O
interface, deposited on silicon (black) or cubic zirconia (red).
The inset shows that from the substrate∕SiO2 interfaces.
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