
Propagation dynamics of deformed 2D vortex Airy beams

Yingkang Chen (陈颖康)1, Xiwen Lin (林茜文)1, Shuyu Lin (林书玉)1,
Shaoying Mo (莫少莹)1, Lingyu Wan (万玲玉)1, and Yi Liang (梁 毅)1,2,*

1Guangxi Key Laboratory for Relativistic Astrophysics, School of Physics Science and Technology, Guangxi University,
Nanning 530004, China

2The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics,
Nankai University, Tianjin 300457, China
*Corresponding author: liangyi@gxu.edu.cn

Received December 25, 2016; accepted April 28, 2017; posted online May 15, 2017

We numerically and experimentally investigate the propagation of deformed 2D vortex Airy beams. Our results
show that, for different topological charges, two parabolic trajectories that can be controlled by changing the
initial wing angle always dominate the beam propagations. In this case, the main lobes take different propagation
distances to restore to the peak intensity. The profiles tend to evolve into 1D or 2D Airy-like patterns to various
degrees in the same propagation distance. Furthermore, the whole profiles yield a small change in their accel-
eration direction, depending on the topological charge and the initial wing angle.
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Due to their intriguing properties including self-accelera-
tion, non-diffraction, and self-healing[1–3], Airy beams
have attracted a lot of attention and inspired tremendous
potential applications in manipulation, biophotonics, and
communication fields such as manipulation of particles[4,5],
generation of curved plasma channels[6], light bullets[7],
guiding discharges[8], routing surface plasmons[9–12], elec-
tron Airy beams[13], three-dimensional super-resolution im-
aging[14], light-sheet microscopy[15], and image signal
transmission[16]. All of these applications are based on
the unique propagation properties of Airy beams. To con-
trol the propagation of Airy beams, a lot of work has been
done to synthesize various kinds of families of Airy beams.
For example, synthesized by three Airy functions, a three-
Airy beam linearly diffracts into a super-Gaussian-like
beam[17]. A vortex Airy beam can be generated[18] if a spiral
phase is imposed. Actually, many works about vortex Airy
beams have been done, including their Wigner representa-
tion[19], propagation[20], dynamic control of collapse[21], spi-
ral spectrum[22], beam wander[23], chirped Airy vortex
beams[24], and so on. All of these vortex Airy beams have
90° angles between their two wings. One question arises:
how do vortex Airy beams propagate when their two wing
angles do not equal 90°?.
Recently, the dynamics of deformed 2D Airy beams

whose wing angles are not 90° were investigated, and it
was shown that two acceleration trajectories exist and
the profiles change with the angle[25]. Based on this, here,
we report a numerical and experimental study on the
propagation of deformed 2D Airy beams carrying a phase
singularity, i.e., optical vortices (OVs). It is found that, at
the same angle between the two wings, this new kind of
Airy beams called deformed 2D vortex Airy beams still
accelerate along two similar trajectories as the deformed
2D Airy beams. In other words, the self-acceleration of

deformed 2D vortex Airy beams is also a result of the “hy-
perbolic umbilic” catastrophe (a two-layer caustic)[26]. The
main lobes will still propagate along a parabolic trajec-
tory, whereas a different path exists to lead to energy flow.
Moreover, our results show that, for different topological
charges and different angles between two wings of de-
formed 2D vortex Airy beams, the profiles of the beams
exhibit different self-acceleration behavior. First, after a
certain propagation distance, these beams tend to evolve
into 1D or 2D Airy-like patterns to various degrees. Sec-
ond, as a result of the orbital angular momentum that the
OV possesses, the whole profile of a deformed 2D vortex
Airy beam exhibits a small left-hand transversal deflec-
tion, while the normal deformed 2D Airy beams always
accelerate along the −y direction, as we designed initially.
In other words, a deformed 2D vortex Airy beam no longer
always accelerates along one direction. Its self-acceleration
direction has a small shift. To further explain the above
phenomena, the beam feature and the propagation dy-
namics are also further elaborated by numerically analyz-
ing the internal transverse power flow of the beams. Our
theoretical analysis is in good agreement with the associ-
ated numerical observations, as well as is demonstrated by
experiments.

Theoretically, to simplify our discussion, following the
approach previously developed[25], a deformed 2D vortex
Airy beam with arbitrary angle θ between its two
wings can be designed to accelerate along the −y direction
at z ¼ 0 as

ψðx; y; z ¼ 0Þ ¼ Aiðs1ÞAiðs2Þ expðαs1 þ αs2Þ
× ½ðs1 − s1dÞ þ iðs2 − s2dÞ�m;

sn ¼ ð−1Þn−1 cos
�
θ

2

�
x∕r0 − sin

�
θ

2

�
y∕r0; n ¼ 1; 2; (1)
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where Aið⋅Þ is the Airy function, α is determined by the
effective aperture of an optical system, sn represents a
dimensionless transverse coordinate, r0 is an arbitrary
transverse scale; s1d and s2d denote the dislocation of
the OV from the origin along s1 and s2 orientations,
respectively; and m is the topological charge of the OV.
Using the field described by Eq. (1) as the input, we can
calculate the evolution of a deformed 2D vortex Airy beam
by solving numerically the paraxial wave equation in free
space by the split-step beam propagation method using

2ik∂zψ þ ∂2xxψ þ ∂2yyψ ¼ 0; (2)

where k ¼ 2πn∕λ (n is the refractive index, λ is the wave-
length of the beam) is the wavenumber.
Typically, α ¼ 0.02, r0 ¼ 40 μm, s1d ¼ 0, s2d ¼ 0,

n ¼ 1, and λ ¼ 532 nm are adopted in this work. When
m ¼ 0, the propagations of normal deformed 2D Airy
beams with different initial angles θ can be obtained based
on Eq. (2), as presented in Fig. 1. As mentioned in Ref. [25]
and shown in Figs. 1(a4)–1(c4), due to a “hyperbolic um-
bilic” catastrophe (a two-layer caustic), when θ ≠ 90°, i.e.,
the initial angle between two wings of the beam is an acute
angle [Fig. 1(a)] or an obtuse angle [Fig. 1(c)], the prop-
agations of the beams are described by two different para-
bolic trajectories: one is for the peak intensity of these 2D
Airy beams (Yd1: the white dashed curves in Fig. 1), the
other is for the main lobes of the 2D Airy beams (Yd2: the
green dashed curves in Fig. 1). For the normal 90° case,
the peak intensity always stays on the main lobe and they
will propagate in a same path [Fig. 1(b)]. Following the
analysis presented in Ref. [25], the above two trajectories
for the deformed 2D Airy beam are a result of the “hyper-
bolic umbilic” catastrophe and can be extracted via the
catastrophe theory in the paraxial approximation[25,26]:

Yd1 ¼
½1–3 sin2ðθ∕2Þ�cos2ðθ∕2Þ

sinðθ∕2Þ
λ2

4π2r30
z2; (3a)

Yd2 ¼ −

λ2 sin3
�
θ
2

�
4π2r30

z2: (3b)

Equation (3a) describes the tendency of the peak inten-
sity associated with the beams and Eq. (3b) depicts the
trajectory of the main lobe of the 2D Airy beams. Appa-
rently, both trajectories can be readily controlled with
ease by varying the initial wing angle θ and the accelera-
tions of the main lobe increase as θ gets larger, as demon-
strated as in Figs. 1(a4)–1(c4).

Furthermore, the catastrophe theory also tells us that
these beams will tend to evolve into the well-known 1D
or 2D Airy patterns after a certain propagation distance,
as described in Ref. [25] (Fig. 1 also presents this phenome-
non). 2D Airy beams with θ ≠ 90° could not preserve their
pattern as well as the 90° case in linear propagation. The
beam shape for θ ¼ 60° will tend to evolve into a 1D Airy-
like pattern [Figs. 1(a1)–1(a3)] while most energy of the
beam for an obtuse angle, i.e., θ ¼ 120° shrinks into a typ-
ical 2D Airy-like shape (some power is involved to evolve
into a 1D Airy-like pattern) [Figs. 1(c1)–1(c3)].

In this work, our main goal is to study the behavior of
vortex Airy beams in detail. So, similar to the investiga-
tion of normal deformed 2D Airy beams, whenm ¼ 1, i.e.,
the deformed 2DAiry beams with different angles carry an
OV with a unit topological charge, the numerical results
about propagation of the beams can also be simulated
from Eq. (2), as shown as in Fig. 2. In Fig. 2, one can
clearly see that the intensity distributions of the beams
are changed a lot. Actually, Eq. (2) shows that not only
the phase but also the amplitude of the beams is modu-
lated. Moreover, here, we let s1d ¼ 0 and s2d ¼ 0, viz.,
the spiral phase superimposes completely on the main
lobe of the beams. Therefore, the sidelobes of the beams
at the input (z ¼ 0 cm) are much stronger than the main
lobe. A half-doughnut main lobe replaces the solid
main lobe of vortex-free Airy beams (m ¼ 0) [the insets
in Figs. 2(a1)–2(c1)]. As the propagation distance in-
creases, due to the self-healing property the main lobe will
be reconstructed as a solid lobe, i.e., after a certain propa-
gation distance, the main lobe can recover to the peak in-
tensity and continue accelerating along the parabolic

Fig. 1. (Numerical simulations, color online) The propagation of
normal deformed 2D Airy beams (α ¼ 0.02, r0 ¼ 40 μm, s1d ¼ 0,
s2d ¼ 0, m ¼ 0) with different initial angles θ: (a) θ ¼ 60°,
(b) θ ¼ 90°, (c) θ ¼ 120°. From the 1st to the 3rd column are
the beam profiles at z ¼ 0, 4, and 8 cm, respectively, and the last
column shows side views of beam propagation up to 8 cm, where
the white (Yd1) and green (Yd2) dashed curves are plotted by
calculating Eqs. (3a) and (3b), respectively.

Fig. 2. (Numerical simulations, color online) Same as in Fig. 1
but with a vortex of a unit topological charge (m ¼ 1) imposed as
in Eq. (1).
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trajectory [Yd2 plotted as a green dashed curve in
Figs. 2(a4)–2(c4)]. It should be noted that the
reconstruction distance is related to the initial wing angle.
For example, the main lobe of the 90° case reappears at a
longer z position than the 120° case [Figs. 2(b4)–2(c4)].
For θ ¼ 60°, the main lobe could not be seen because it
needs a longer propagation distance to self-heal [Fig. 2(a)].
Similar to the case ofm ¼ 0, these beams tend to evolve

into the well-known 1D or 2D Airy patterns after a certain
propagation distance. However, in this case, for an obtuse
angle, i.e., θ ¼ 120°, most of the beam energy spreads into
a 1D Airy-like pattern while less energy shrinks into a 2D
Airy-like shape. Counter to that, for θ ¼ 60°, most of the
beam propagates along the Yd1 trajectory [plotted as a
white dashed curve in Fig. 2(a4)] and it cannot evolve into
a full 1D Airy-like pattern. In Figs. 2(a4)–2(c4), one can
also see that the propagation of the beams is still described
by two different parabolic trajectories, as in Fig. 1. Thus,
one can infer that the propagation dynamics of deformed
2D vortex Airy beams also originates from a “hyperbolic
umbilic” catastrophe (a two-layer caustic).
Interestingly, as a result of the orbital angular momen-

tum of OVs, the whole profiles in Fig. 2 will exhibit a very
small left-hand deflection when the propagation distance
increases, as shown as in Figs. 2(a3)–2(c3). In other words,
the acceleration of a deformed 2D vortex Airy beam is not
only along the −y direction, but also has a small compo-
nent along the −x direction. Its acceleration direction has
a small shift. Specifically, this left-hand deflection of the
profile enhances while θ gets larger. That is because
the null energy distribution of the beams is governed by
the Airy function and the OV cannot exceed the main
lobes of the beams. So, the vortex structure will always
be limited by the main lobe and the left-hand deflection
gets larger when the acceleration of the main lobe goes
up with the wing angle θ.
Keeping all of the conditions the same as in Figs. 1

and 2, we also study the deformed 2D vortex Airy beams
when m ¼ 2. Comparing with the intensity distributions
of Figs. 1 and 2, it is seen that for θ ¼ 60° we observe
hardly any energy extending into a 1D Airy-like shape
while most of the energy of the beam for θ ¼ 120° evolves

into 1D Airy-like pattern, as depicted in Figs. 3(a)
and 3(c). Moreover, comparing with the 2D vortex Airy
beams carrying a unit spiral phase, the whole intensity
profiles in Fig. 3 exhibit a bigger left-hand deflection at
the same propagation distance due to a bigger orbital an-
gular momentum density of OVs for m ¼ 2. Apparently,
as introduced by the same reason as in Fig. 2, the left-hand
deflections of the main lobes in Fig. 3 are enhanced when
the initial wing angle θ gets larger. In Figs. 3(a4)–3(c4),
the two parabolic trajectories Yd1 and Yd2 expressed
by Eq. (3) still limit the acceleration of the beams along
the same path, as in the case of m ¼ 0; 1. However, com-
paring with the case of m ¼ 0; 1, the main lobes of these
beams almost disappear and need a longer distance to re-
store to the peak intensity.

In order to get a more intuitive explanation of the beam
dynamics, the above phenomena that resemble self-heal-
ing in Figs. 1–3 can be better examined by analyzing
the internal transverse power flow associated with the
2D Airy beams[3,25]. Figure 4 shows the transverse power
flow of the 2D Airy beams with θ ¼ 60°, 90°, 120° numeri-
cally calculated at different topological charges. When
m ¼ 0, most of the whole transverse power flow is along
the direction of −y [Fig. 4(a)]. For θ < 90°, the power
of the main lobe flows outward, toward the sidelobes
[Fig. 4(a1)]. Thus, the acceleration of the main lobe along
the −y direction is reduced. Meanwhile, the two wings ex-
pand when their power flows outward in the horizontal
direction. As a result, a part of the beam evolves into a
1D Airy-like shape. In contrast, for θ > 90°, the power
of the sidelobes flows toward the main lobe [Fig. 4(a3)].

Fig. 3. (Numerical simulations, color online) Same as in Fig. 1
but with a vortex of two unit topological charges (m ¼ 2) im-
posed as in Eq. (1).

Fig. 4. (Color online) Transverse power flow of the 2D Airy
beams carrying different topological charges at z ¼ 0.3 mm:
(a)m ¼ 0, (b)m ¼ 1, (c)m ¼ 2. From the 1st to the 3rd column
corresponds to different initial wing angles: θ ¼ 60°, θ ¼ 90°, and
θ ¼ 120°, respectively.
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This inward flow enhances the acceleration of the main
lobe along −y while it leads to the elongation of the main
lobe and turns it into a 1D Airy-like pattern [Fig. 1(c)]. In
addition, as mentioned in Ref. [25], in the region marked
by the red circles in Figs. 4(a1) and 4(a3), the overall in-
flux of the power is larger than the outflow, which indi-
cates the shifting of the peak intensity from the main
lobe to the sub lobes and causes two different acceleration
paths. Moreover, this power flow will evolve into a 2D
Airy-like shape, which is more obvious for >90°.
When m ¼ 1; 2, one can see that the transverse power

flow of the beams is along an anticlockwise rotation direc-
tion, which implies that a left-hand deflection will happen
on the whole intensity distribution. Moreover, compared
with the case of m ¼ 0, there is less and less power to flow
into the areas marked by the red dashed circles. In other
words, it is not easy to transfer part of the power to a 2D
Airy-like shape while more and more power from the side-
lobes expands outward as a 1D Airy-like shape [Figs. 2(c3)
and 3(c3)]. Furthermore, for a larger initial angle and the
same topological charge, the anticlockwise-rotation power
flow is along a bigger orbital radius [Figs. 4(b1)–4(b3)].
Clearly, the 2D beams with a larger initial angle
possess orbital angular momentum density and a larger
transversal shift on the acceleration direction. It should
be emphasized that, for m ¼ 2, there are weak anticlock-
wise-rotation power flows existing because of the bigger
modulation on amplitude and leads to a weaker transverse
power flow. Actually, according to the property of OVs,
the orbital angular momentum density is bigger with a
bigger topological charge. Thus, for m ¼ 2, the beams
will still exhibit a larger deflection in the acceleration
direction.
In order to verify the above analysis, we performed a

series of experiments to investigate the propagation dy-
namics of deformed 2D vortex Airy beams with arbitrary
initial angles θ between the two wings. Because it is diffi-
cult to calculate the Fourier transform of deformed vortex
Airy beams, our experimental setup is not similar to the
Fourier transformation method that was used in our pre-
vious work[25]. Instead, we employ an off-axis hologram
method like Ref. [27] to generate deformed 2D vortex
Airy beams, and Fig. 5 shows our experimental setup.

A linearly polarized Gaussian beam with a wavelength
of λ ¼ 532 nm is launched onto a spatial light modulator
(SLM) with the desired hologram, then a 4f system with a
spatial filter turns the Gaussian beam into a deformed 2D
vortex Airy beam. The generated deformed 2D vortex
Airy beams are monitored by a CCD camera. Here, the
hologram is manifested by computing the interference be-
tween a deformed vortex Airy wave and a plane wave.

The parameters adopted in our experiments are the
same as those employed in the simulations shown in
Figs. 1–4. The experimental results of the 2D vortex Airy
beams form ¼ 0; 1; 2 with different initial wings angles are
presented in Fig. 6, showing a good agreement with
the results obtained from our previous analysis. When
the holograms in Figs. 6(a4), 6(d4), and 6(g4) are used,
viz., for θ ¼ 60°, as expected, the wing angle becomes
larger along the propagation direction. In this case, the
2D Airy pattern cannot be preserved as it tends to evolve

Fig. 5. (Color online) Experimental setup for the generation and
propagation of deformed vortex Airy beams. PC: personal
computer; L: lens.

Fig. 6. (Color online) Experimental results showing the trans-
verse intensity patterns captured at different propagation dis-
tances for deformed 2D vortex Airy beams with different
initial angles between the two wings. From the 1st to the 3rd
column are the beam profiles at z ¼ 0 cm, z ¼ 4 cm, and
z ¼ 8 cm, respectively, and the last column shows the corre-
sponding holograms of the beams with different conditions.
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into a 1DAiry-like shape to various degrees [Figs. 6(a), 6(d),
and 6(g)]. On the other hand, when the holograms in
Figs. 6(c4), 6(f4), and 6(i4) are used, the angle between
the two wings becomes smaller during propagation
[Figs. 6(c), 6(f), and 6(i)]. In addition, as the topological
charge increases, more and more intensity falls on the 1D
Airy-like pattern, in agreement with Figs. 1–3(c). For all
of these cases, one can also see that the acceleration of the
main lobe varies with respect to the angle θ between the
two wings.
In addition, we can observe that, for a bigger topological

charge, the peak intensity starts to reappear on the main
lobe at a longer propagation distance [Figs. 6(d4)–6(i4)].
For example, in the middle of the intensity distributions
in Fig. 6(f3) (m ¼ 1) has yielded the peak intensity on
its main lobe but the beam in Fig. 6(i3) (m ¼ 2) still has
no intensity to restore on the same transversal position
[marked by the green dashed circles in Figs. 6(f3) and
6(i3)]. For the case of an acute angle in Figs. 6(a), 6(d),
and 6(g), the influence of the topological chargem becomes
larger, leading to a more evident shift of the peak intensity
from the main lobe to the sub lobes. It is more difficult to
form a 1D-Airy-like pattern since the intensity on the main
lobe position is largely reduced by this factor. Meanwhile,
from Fig. 6, we can also find that a left-hand deflection ex-
ists that rises with an increasing topological charge and an
increasing initial wing angle. Therefore, all experimental re-
sults are in excellent agreement with theory.
In conclusion, we investigate the ballistic dynamics of 2D

vortex Airy beams with arbitrary initial angles between
two wings through the split-step beam propagation method
and the analysis of the energy flow. Our results show that
these beams always follow two parabolic trajectories: one
trajectory describes the acceleration of the main lobe, while
the other describes the acceleration of the other energy flow.
Both accelerations can be controlled with ease by means of
the initial wing angles and the topological charge of the vor-
tex Airy beams. Seemingly due to a “hyperbolic umbilic”
catastrophe, these beams tend to evolve into 1D or 2D
Airy-like patterns to various degrees after a certain propa-
gation distance. Furthermore, the whole profiles of beams
no longer accelerate along only one direction. A left-hand
deflection happens and increases with an increasing topo-
logical charge and an increasing initial wing angle. For a
bigger topological charge and a smaller initial wing angle,
the main lobe takes a longer distance to restore to the peak
intensity. Thus, we can control the peak intensity at any
desired location by changing the parameters such as the
topological charge and initial wing angle. Here, it should
be pointed out, the above experimental and theoretical
analysis can be applied for more complicated cases with
larger topological charges as well. Our results may be useful
for designing and controlling dynamical Airy beams for
various applications.
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