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Quantum coherence is a fundamental feature of quantum
mechanics. It has been widely used as a resource and
root concept in quantum information processing[1], quan-
tum metrology[2–5], entanglement creation[6,7], thermo
dynamics[8–12], and quantum biology[13–16]. Recently, a rig-
orous theory of coherence as a physical resource has been
developed[17–19], and necessary constraints have been put
forward to assess valid quantifiers of coherence[17]. Some
coherence measures based on various physical contexts,
such as the l1 norm of coherence, the relative entropy of
coherence[17], and the skew information[20,21], have been
put forward.
Quantum coherence is a useful physical resource,

but the coherence of a quantum state is often destroyed
by the noise of the environment. A challenge in exploiting
the resource is to protect the coherence from decoherence
caused by noise. Studies on this topic were started in
Ref. [22], where the authors found that the coherence is
frozen for some particular initial states only when a quan-
tum system undergoes the local identical bit flip and bit
phase flip channels. Then, the question we ask is whether
there exist methods to freeze coherence when a quantum
system undergoes other channels.
Both coherence and entanglement capture the quan-

tumness of a physical system, and it is well known that
entanglement also stems from the superposition principle,
which is the essence of coherence. In practice, quantum
entanglement is fragile with respect to environmental
noises[23]. Some ideas are proposed to protect quantum
states and quantum entanglements from decoherence
using a quantum weak measurement and quantum mea-
surement reversal[24–28]. So, we can optimize quantum
states and freeze coherence from decoherence using a weak
measurement and quantum measurement reversal.
First, we need to review some notions, such as incoher-

ent states, incoherent operations, and coherence measures.
For an N-qubit system associated with a Hilbert space
C2N , the computational basis, fj0i; j1ig⊗N , is fixed as
the reference basis, and the incoherent states are those
whose density matrix, δ, is diagonal in the reference basis:

δ ¼
X

i1;…;iN

di1;…;iN ji1;…; iN ihi1;…; iN j: (1)

A quantum channel is described by a completely
positive and trace-preserving (CPTP) map, Λ, whose
action on the state ρ of the system can be characterized
by a set of Kraus operators, fKjg, such that ΛðρÞ ¼P

jK jρK
þ
j , where

P
jK

þ
j Kj ¼ I , and I is the identity op-

erator. Incoherent quantum channels [incoherent CPTP
(ICPTP) maps] constitute a subset of quantum channels
that satisfy the additional constraint KjτK

þ
j ⊂ τ for all j,

where τ is the set of incoherent states[17].
We consider paradigmatic instances of incoherent chan-

nels that embody typical noise sources in quantum infor-
mation processing and whose action on a single qubit is
described as follows[1]. The bit flip, bit phase flip, and
phase flip channels are represented in Kraus form by
KFi

0 ¼ �����������������
1− q∕2

p
I , KFi

j;k≠i ¼ 0, and KFi
i ¼ ��������

q∕2
p

σi , with
i ¼ 1, i ¼ 2, and i ¼ 3, respectively; σi is the ith Pauli ma-
trix, and q ∈ ½0; 1� encodes the strength of the noise and
depends on time t. The amplitude-damping (AD) channel
is represented by

KA
0 ¼

�
1 0
0

������������
1− q

p
�
; KA

1 ¼
�
0

���
q

p
0 0

�
: (2)

The action of N independent and identical local noisy
channels on each qubit of anN -qubit system maps the sys-
tem state, ρ, into the evolved state,

Λ⊗N
q ðρÞ ¼

X
j1;…;jN

ðKj1 ⊗ � � � ⊗ KjN ÞρðKþ
j1
⊗ � � � ⊗ Kþ

jN
Þ:

(3)

We recall the well-known measures of coherence[17]. The
l1 norm of coherence, Cl1 , measures coherence in an intui-
tive way via the off-diagonal elements of a density matrix,
ρ, in the reference basis, Cl1ðρÞ ¼

P
i≠j jρij j. The relative

entropy of coherence is given by CrðρÞ ¼ SðρdÞ− SðρÞ
for any state ρ, where ρd is the matrix containing only
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the diagonal elements of ρ in the reference basis,
and SðρÞ ¼ −Trðρ log ρÞ is the von Neumann entropy.
Reference [29] has proven that the coherence is frozen
for all coherence measures when the relative entropy of
coherence is frozen.
A weak measurement is a type of quantum measure-

ment that would not cause the quantum system to col-
lapse fully[30], thus the weak-measured system may be
recovered through some reversal operations. Usually a
weak measurement[24,26] can be parametrized as
M ¼ diagf1; ������������

1− p
p g, and the measurement reversal op-

erator is written as N ¼ diagf ��������������
1− pr

p
; 1g. For conven-

ience and generality, the weak measurements are
given by M ¼ diagf1;mg and N ¼ diagfn; 1g, with
m; n ∈ ½0;þ∞Þ. M is the projective measurement
when m ¼ 0. When m ∈ ð0; 1Þ, then M is a measurement
partially collapsing on the ground state, and when
m ∈ ð1;þ∞Þ, then M can be written as M ¼
m·diagf1∕m; 1g, where m is an overall factor and
1∕m < 1; thus, M is a weak measurement partially col-
lapsing on the excited state[25]. For the normalization of
the final state, one should multiply by the factor
minf1; 1∕m2g. A similar analysis is valid for N .
In order to freeze the coherence, we should perform two

weak measurements, M and N , before and after the qubit
is put into the incoherent channel, respectively. With
these weak measurements implemented, the final state is

ρwf ¼ NΛqðMρMþÞNþ; (4)

where Λq is defined by Eq. (3).
We now analyze the conditions when the coherence

is frozen during the evolution of a quantum system
under the AD channels. For a pure qubit state, jψi ¼
cos θj0i þ sin θj1i, with θ ∈ ½0; π�. According to Eq. (4),
the final density matrix of the qubit in the reference basis,
fj0i; j1ig, is

ρwf ¼ 1
T

�
n2ðcos2 θþm2q sin2 θÞ mn

������������
1− q

p
cos θ sin θ

mn
������������
1− q

p
cos θ sin θ m2ð1− qÞsin2 θ

�
;

(5)

where T ¼ n2 cos2 θ þm2ð1− q þ n2qÞ sin2 θ is the nor-
malization factor. The overall success probability is

Ps ¼ T·minf1; 1∕m2g·minf1; 1∕n2g: (6)

The elements ρ12 and ρ21 of the final density matrix, ρwf ,
are

ρ12 ¼ ρ21 ¼
mn

������������
1− q

p
cos θ sin θ

n2 cos2 θ þm2ð1− q þ n2qÞsin2 θ : (7)

Using the inequality x þ y ≥ 2
������
xy

p
(equality is obtained

if, and only if, x ¼ y) and ensuring that the elements ρ12
and ρ21 are not related to the strength, q, of the noise, we
can show that ρ12 and ρ21 reach freezing values when the
following conditions are met:

m ¼ f 1ðθÞ∕
���
q

p
; n ¼

���������������������
ð1− qÞ∕q

p
f 1ðθÞ tan θ; (8)

where f 1ðθÞ is an arbitrary meaningful function about θ.
The corresponding elements of the final density matrix are
ρ11 ¼ ð1þ f 21ðθÞtan2 θÞ∕T and ρ12 ¼ ρ21 ¼ ρ22 ¼ 1∕T ,
with T ¼ 2þ f 21ðθÞtan2ðθÞ. The l1 norm and relative en-
tropy of coherence are frozen under these conditions.
We can see that if θ ¼ 0 or θ ¼ π, the success probability
is zero. If θ ¼ π∕2, then ρ12 ¼ ρ21 ¼ 0. That is to say, this
method of freezing coherence cannot create coherence
from the initial incoherent state.

Particularly, when f 1ðθÞ ¼ cot θ, then m ¼ cot θ∕ ���
q

p
and n ¼ ���������������������ð1− qÞ∕qp

. We obtain the freezing values:
ρ12 ¼ ρ21 ¼ 1∕3, ρ11 ¼ 2∕3, and ρ22 ¼ 1∕3. The l1 norm
and the relative entropy of coherence are Cl1ðρÞ ¼ 2∕3
and CrðρÞ ≈ 0.37.

So, we can conclude that the coherence is frozen under
these conditions of weak measurements when a one-qubit
quantum system undergoes an AD channel. Interestingly,
for these particular conditions, the frozen coherence is
independent of the initial state.

We will show that the coherence always manifests as
frozen in the case of two qubits undergoing identical
AD channels by using prior weak measurements and post
weak measurements.

Consider the two-qubit Bell-like state jφi ¼
cos θj00i þ sin θj11i, with θ ∈ ½0; π�. The weak measure-
ment is a nonunitary operation, which can be written as

M 1 ¼
�
1 0
0 m1

�
⊗

�
1 0
0 m2

�
;

N 1 ¼
�
n1 0
0 1

�
⊗

�
n2 0
0 1

�
:

(9)

In terms of Eq. (4), in the reference basis
fj00i; j01i; j10i; j11ig, the final density matrix of the
two qubit turns out to be

ρMN ¼ 1
T1

2
664
a1 0 0 e1
0 b1 0 0
0 0 c1 0
e1 0 0 d1

3
775; (10)

with

a1 ¼ n2
1n

2
2ðcos2 θ þm2

1m
2
2q

2 sin2 θÞ;
b1 ¼ n2

1m
2
1m

2
2qð1− qÞsin2 θ;

c1 ¼ n2
2m

2
1m

2
2qð1− qÞsin2 θ;

d1 ¼ m2
1m

2
2ð1− qÞ2 sin2 θ;

e1 ¼ n1n2m1m2ð1− qÞ sin θ cos θ;

T1 ¼ n2
1n

2
2 cos

2 θ þ ½n2
1n

2
2q

2 þ ðn2
1 þ n2

2Þqð1− qÞ
þ ð1− qÞ2�m2

1m
2
2 sin

2 θ;

where T1 is the normalization factor. The overall success
probability is
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Ps1 ¼ T1 Π
x¼fm1;m2;n1;n2g

minf1; 1∕x2g: (11)

Using similar methods as the single-qubit case above,
we analyze the elements ρ14 ¼ ρ41 ¼ e1∕T1 of the final
density matrix, ρMN . After calculation, we get the condi-
tions for freezing the quantum coherence:

m1m2 ¼ f 2ðθÞ∕q; n1 ¼ n2 ¼
�����������������������������������������������
½ð1− qÞf 2ðθÞ tan θ�∕q

p
;

(12)

where f 2ðθÞ is an arbitrary meaningful function
about θ. The corresponding elements of the final density
matrix, ρMN , are ρ11 ¼ ð1þ f 22ðθÞtan2 θÞ∕T 1, ρ22 ¼ ρ33 ¼
ðf 2ðθÞ tan θÞ∕T1, and ρ44 ¼ ρ14 ¼ ρ41 ¼ 1∕T1, with
T1 ¼ 1þ ð1þ f 2ðθÞ tan θÞ2. Under these conditions, we
can see that the l1 norm and the relative entropy of coher-
ence are frozen. Similar to the single qubit, if θ ¼ 0 or
θ ¼ π, the success probability is zero; if θ ¼ π∕2,
then ρ14 ¼ ρ41 ¼ 0.
Particularly, when f 2ðθÞ ¼ cot θ, then m1m2 ¼ cot θ∕q

and n1 ¼ n2 ¼
���������������������ð1− qÞ∕qp

, and we obtain the correspond-
ing elements of the final density matrix: ρ14 ¼ ρ41 ¼ 0.2,
ρ11 ¼ 0.4, and ρ22 ¼ ρ33 ¼ ρ44 ¼ 0.2. The l1 norm and
the relative entropy of coherence are Cl1ðρÞ ¼ 0.4 and
CrðρÞ ≈ 0.22. Under the conditions given, the l1 norm
and relative entropy of coherence are frozen with fixed
values.
One can see that one of the conditions is

m1m2 ¼ f 2ðθÞ∕q; we can set m2 ¼ 1, i.e., the prior weak
measurement on the second qubit is not necessary, and
the coherence can be frozen by adjusting m1. If we set
m1 ¼ m2 ¼

����������������
f 2ðθÞ∕q

p
, then the prior weak measurement

is implemented on the two qubits.
So, we can conclude that the coherence of a two-qubit

Bell-like state is frozen under these conditions of weak
measurements when the quantum system undergoes iden-
tical AD channels.
Extending the above conclusions into multi-qubit

systems, we can freeze the coherence of multi-qubit
systems by using similar methods when each qubit under-
goes identical AD channels. For N-qubit states,
jϕi ¼ cos θj0⊗X i þ sin θj1⊗Xi, with θ ∈ ½0; π� and X ≥ 3.
We perform prior weak measurementsM⊗X on each qubit
of the system, then let the qubits enter the AD channels;
after obtaining the qubits, we do post weak measurement
N⊗X on each qubit. When m ¼ f 3ðθÞ∕ ���

q
p

and
n ¼ ���������������������ð1− qÞ∕qp

f 4ðθÞ, where f 3ð4ÞðθÞ is an arbitrary mean-
ingful function about θ, the coherence of the multi-qubit
will be frozen when the qubits undergo identical AD
channels.
We now analyze and discuss the conditions for freezing

coherence from decoherence at a finite temperature using
a weak measurement. At a nonzero temperature, the chan-
nel is more complicated. The AD channel under a finite
temperature can be modeled by the following generalized
amplitude damping (GAD) channel[1]:

E0 ¼
���
p

p �
1 0

0
������������
1− q

p
�
; E1 ¼

���
p

p �
0

���
q

p

0 0

�
;

E2 ¼
������������
1− p

p � ������������
1− q

p
0

0 1

�
; E3 ¼

������������
1− p

p � 0 0���
q

p
0

�
;

(13)

where q ∈ ½0; 1� encodes the strength of the noise and de-
pends on time t, and p is a function of temperature. The
GAD channel describes a situation where the system can
both lose and gain excitations by interacting with the
environment. We perform two weak measurements, M
and N , respectively, before and after the qubit is put into
the GAD channel.

For a pure qubit state, jψi ¼ cos θj0i þ sin θj1i, with
θ ∈ ½0; π�. According to Eq. (4), the final density matrix
of the qubit in the reference basis is

ρwGAD ¼ 1
T2

�
a2 c2
d2 b2

�
; (14)

with a2 ¼ n2½ð1− pþ pqÞcos2 θ þm2pq sin2 θ�,

b2 ¼ m2ð1− pqÞsin2 θ þ ð1− pÞq cos2 θ;
c2 ¼ d2 ¼ mn

������������
1− q

p
cos θ sin θ;

T2 ¼ ½n2ð1− q þ pqÞ þ ð1− pÞq�cos2 θ
þm2½1− pq þ n2pq�sin2 θ;

where T2 is the normalization factor. The overall success
probability is

Ps2 ¼ T2·minf1; 1∕m2g·minf1; 1∕n2g: (15)

The elements ρ12 and ρ21 of the final density matrix,
ρwGAD, are ρ12 ¼ ρ21 ¼ c2∕T2. We analyze the elements
ρ12 and ρ21 by using the inequality x þ y ≥ 2

������
xy

p
(equality

is obtained if, and only if, x ¼ y). After calculation, we
can see that if pð1− pÞ ¼ x·½ð1− qÞ∕q2�, i.e.,
p ¼ ð1�

�������������������������������������
1− 4xð1− qÞ∕q2

p
Þ∕2, with x > 0, is an arbi-

trary number, then the elements of the final density ma-
trix are fixed values when the following conditions are
met:

m ¼
������������������������������������������
ð1− q þ pqÞð1− pÞ

ð1− pqÞp
4

s
cot θ;

n ¼
���������������������������������
ð1− pqÞð1− pÞ
pð1− q þ pqÞ

4

s
:

(16)

The corresponding elements of the final density matrix
are ρ12 ¼ ρ21 ¼ 1∕½2ð ���

x
p þ ������������

1þ x
p Þ� and ρ11 ¼ ρ22 ¼ 0.5.

We can see that the coherence is frozen under these
conditions of weak measurements when a one-qubit quan-
tum system undergoes a GAD channel at a certain
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temperature. Interestingly, the frozen coherence is inde-
pendent of the initial state.
We calculated the conditions for freezing coherence of

multi-qubit systems with weak measurements when each
qubit undergoes an identical GAD channel; the result was
similar to that for one qubit. So, we can freeze the coher-
ence of multi-qubit systems by using similar methods; but,
when the initial state is an incoherent state, the methods
are invalid.
As can be seen from above, the coherence of a quantum

system can be frozen when it undergoes AD or GAD
channels by performing prior weak measurements and
post weak measurements. Is this method is valid for other
incoherent channels? We tested that for a single qubit
subject to Markovian bit flip, bit phase flip, phase
flip, depolarizing, and phase damping channels. We
found that only the bit flip and bit phase flip channels
allowed for nonzero frozen coherence, while all the other
considered incoherent channels were invalid for this
method.
In conclusion, we determine the conditions for which

the coherence of a quantum system is dynamically varied
and frozen: this occurs for an arbitrary number of qubits,
initialized in a coherent state, using prior weak measure-
ments and post weak measurements on each qubit of
the quantum system before and after undergoing local
independent and identical incoherent channels. But, the
incoherent channels only include the bit flip, bit phase flip,
and AD channel. The conditions of the weak measure-
ments are determined by the initial state and the param-
eters of the channel. We show that there are general
agreements on freezing conditions both for the l1 norm
and the relative entropy of coherence. This method of
freezing coherence to ensure a durable physical exploita-
tion of coherence is feasible in theory, thus it will be inter-
esting to explore practical realizations of such dynamical
conditions.
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