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We develop an improved region growing method to realize automatic retinal pigment epithelium (RPE) cell
segmentation for photoacoustic microscopy (PAM) imaging. The minimum bounding rectangle of the segmented
region is used in this method to dynamically update the growing threshold for optimal segmentation. Phantom
images and PAM imaging results of normal porcine RPE are applied to demonstrate the effectiveness of the
segmentation. The method realizes accurate segmentation of RPE cells and also provides the basis for quanti-
tative analysis of cell features such as cell area and component content, which can have potential applications in
studying RPE cell functions for PAM imaging.
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Retinal pigment epithelium (RPE) is a monolayer of pig-
mented cells located between photoreceptor outer seg-
ments and Bruch’s membrane. RPE has the function of
transportation of nutrients and metabolic products
between photoreceptors and blood[1,2]. Thus, it plays an
important role in the maintenance of retinal homeostasis
and is implicated in a majority of retinal diseases due to
the failure of RPE functions[3–5]. An imaging method to
examine RPE cells for retinal pathological analysis is
needed.
Photoacoustic microscopy (PAM) is a noninvasive and

label-free three-dimensional imagingmodality based on the
optical absorption property of biological tissues[6–9], which
has proved its capacity for in vivo imaging of blood vessels
and RPE in fundus[10–13]. To achieve the cellular or subcel-
lular imaging level, PAM systems have been developed to
achieve micrometer or submicrometer resolution and used
for imaging red blood cells and pigment cells[7,14,15]. Since the
photoacoustic (PA) signals of RPE are mostly generated
from the strong light absorption of the pigment compo-
nents, especially the melanin, the PAM can display the cell
morphology, and more importantly, indicate the melanin
content in cells[16], which is highly correlated with aging
and retinal diseases such as age-related macular degener-
ation (AMD)[5,17].
To acquire the RPE cell features such as morphology

and component content, accurate cell detection and seg-
mentation in cellular images are important. In previous
work, several semi-automatic and automatic cell segmen-
tation methods have been used for cell evaluation, and
they acquired remarkable results in the images of corneal

endothelium, photoreceptor, and RPE cells[18–24], using
two-photon fluorescence microscopy, confocal microscopy,
and adaptive optics retinal imaging. As these imaging
results cannot provide melanin content information of
RPE cells, an automatic RPE cell segmentation algorithm
for PAM imaging is necessary.

In our previous work[15], RPE cells were imaged using
dual modal PAM and optical coherence tomography
(OCT). An ordinary region growing method was applied
to segment RPE cells in PAM images by utilizing the con-
nectivity of the relatively similar signal intensities within
each cell. But the ordinary region growing method is lim-
ited as static predefined thresholds are required to avoid
overgrowing of the segmented regions when applied di-
rectly to images[25,26]. Since the signal intensities are not
consistent between different cells in PAM images, no single
static threshold is appropriate for the region growing
process of each seed point. Thus, the previously adopted
algorithm is unable to automatically segment all cells in
PAM images.

In this Letter, to further realize automatic cell segmen-
tation for PAM imaging and quantitatively studying
cell features, we developed an improved region growing
method by using the morphological characteristic of the
RPE cell as a guide to dynamically update the growing
threshold, so that the algorithm was capable of automati-
cally traversing and identifying RPE cells in PAM images.
Our automatic segmentation algorithm can potentially
provide a quantitative analytical method for cell patho-
logical research and disease detection at the cellular level
using PAM imaging.
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The experimental system forRPEcell imaging is a home-
made submicrometer resolution PAM system, which is
shown in Fig. 1. Details about the system description
can be seen in our previous work[15]. The lateral resolution
of the PAM system is measured as 0.56 μm, and the irra-
diation energy on the samples is 10 nJ per pulse.
The region growing method for segmentation is based

on an iterative approach to detect intracellular regions
by adding connected points from the selected seed points
in the image. Therefore, the accuracy of the cell segmen-
tation relies on the positions of the seed points and grow-
ing thresholds to determine whether the neighborhood
should be added to the region. In this Letter, we developed
an algorithm by dynamically distributing seed points and
adjusting segmentation thresholds to realize automatic
RPE cell segmentation. The algorithm consists of three
major steps, as shown in Fig. 2.
Step 1 is the seed point distribution. The seed points for

region growing are initially uniformly spaced in the image.
Some of the initial seed points are probably located in the
intercellular space. These seed points will cause incorrect
segmented cell regions, thus, the seed points need to be
redistributed into intracellular regions. The seed point
redistribution is implemented by first selecting a square
region centered at the current seed position and then pick-
ing the point with the largest signal amplitude within the
selected region as the new seed point. Since the PA signals
are mostly induced by the strong light absorption of mela-
nin within the RPE cells, the point with the largest signal
amplitude corresponds to a point within the RPE cells if
the neighborhood region is large enough to contain parts
of the intracellular region.
In Fig. 3, the process of seed point distribution is illus-

trated in a PAM image of RPE. The initial distribution of
seed points is shown as the red points in Fig. 3(a), and
several points are located within the intercellular region.
The dashed box in Fig. 3(a) represents the defined square
region for the seed point in the center of the box.
The size of the square region is 9 × 9 pixels for the

redistribution of each seed point. The blue point is the
maximum value within the square region, which is also lo-
cated in one RPE cell. The seed point is then modified to
the blue point. After redistributing all of the initial seed
points in Fig. 3(a), the redistributed seed points are shown
as the blue points in Fig. 3(b), and the seed points are all in
the intracellular regions for the following region growing.
The density of the seed points and the range of neighbor-
hood region can be modified based on the balance of seg-
mentation accuracy and implementation time.

Fig. 1. Schematic of the PAM system. PC1 and PC2, personal
computer for scanning control and data acquisition; BS, beam
splitter; PD, photodiode; FP1 and FP2, FiberPort for coupling
or collimating; SMF, single mode fiber; 2D GM, two-dimensional
galvanometer; SL, scan lens; TL, tube lens; OL, objective lens;
UT, ultrasonic transducer; M1 and M2, mirror.

Fig. 2. Flow diagram of automatic RPE cell segmentation with
the improved region growing method.

Fig. 3. Seed point distribution for segmentation. (a) Initial dis-
tribution of seed points shown as the red points, the dashed box
is the defined square region for redistribution of the seed point in
the center of the box, and the blue point is the transferred seed
point after redistribution. (b) Redistributed seed points of the
same region in (a) shown as the blue points. Bar: 10 μm.
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Step 2 is automatic segmentation. The segmentation is
realized based on the region growing method using eight
connected neighborhoods. First, an identical growing
threshold Tg is used for region growing of each seed point
and provides the segmented result as a binary image with
one for the segmented region and zero for the rest.
However, the obtained segmented region from this simple
region growing will probably contain more than one cell
due to overgrowing under an improper threshold. Thus,
the minimum bounding rectangle (MBR) of the seg-
mented region is calculated to judge the segmentation re-
sult and adjust the growing threshold Tg. Since the RPE
cell has the morphology of a regular polygon, the MBR of
the correctly segmented cell will have an aspect ratio (AR)
close to one. When the segmented region overgrows to two
or more cells, the AR will be much larger than one. Fur-
thermore, if the segmented region consists of more than
one cell, the region will appear as an irregular shape, which
can cause significant difference between the area of the
MBR and the segmented region. Thus, the judging condi-
tion can be written as

AR ¼ LM
SM

; R ¼ AS
AM

; (1)

S ¼ AR < T1 ∧ R < T2; (2)

where LM and SM are the lengths of the long and short
sides of the MBR, respectively, AR is the aspect ratio of
the MBR, which represents the morphological character-
istic of the segmented region, AS and AM are the areas of
the segmented region and its MBR, respectively, R is the
area ratio of the segmented region and its MBR, and T1
and T 2 are two predefined judging thresholds. For posi-
tive judging result S , the cell segmentation for the current
seed point is completed, and the next seed point will be
loaded for segmentation. Otherwise, the growing thresh-
old Tg will be decreased by a constant step St and used
for a new segmentation iteration until the judging condi-
tion is satisfied.
Figure 4 illustrates the automatic segmentation process

with the improved region growing method. Figures 4(a)
and 4(e) are two PAM images of RPE cells with red arrows
pointing to the selected cells for segmentation. The prede-
fined judging thresholds T1 and T2 are chosen as 1.5 and
1.2 for each segmented region. Figures 4(b) and 4(f) are
the intermediate results of the segmentation method with
the MBR shown as the red boxes. Both intermediate re-
sults need to be re-segmented. The MBR in Fig. 4(b)
shows a much larger AR than one when more than one
cell is segmented. In Fig. 4(f), the AR does not have sig-
nificant differences compared to the segmented result of
only one cell, and the segmented region is not much larger
than the calculated largest cell. In this case, the area ratio
R in Eq. (1) between the segmented region and its MBR is
important for further identification of the inaccurately
segmented region. Therefore, the combination of judging
conditions with AR andR enhances the accuracy for single

cell identification and segmentation. The segmented
results finally converge to the regions in Figs. 4(c) and
4(g), which match the original cells very well, as shown
in Figs. 4(d) and 4(h).

Step 3 is post-processing. After segmentation for all
seed points in the image is completed, a two-step post-
processing is implemented. First, the segmented regions
that are connected with the boundary of the image are
removed. Secondly, since more than one seed point can
be redistributed into an identical cell, repeated segmented
results should also be removed. The cell repetition index is
utilized for this purpose and defined as

CIci∕m ¼ 1−
X

x;y

jI ciðx; yÞ− Imðx; yÞj
I ciðx; yÞ

; (3)

Fig. 4. RPE cell segmentation with improved region growing
method. (a), (e) PAM images of different RPE cells with red
arrows pointing to the selected cells for segmentation. (b), (f) In-
termediate results of the segmentation method with the MBRs
shown as the red boxes. (c), (g) Final segmented results with
MBRs. (d), (h) Superposed images of the segmented regions
and original imaging results. Bar: 10 μm.
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where I ci is the ith confirmed cell segmented binary image
with the cell region of one and the rest zero, Im is the mth
non-confirmed segmented binary image, and x, y are the
pixel positions in the images. Cell repetition index CIci∕m
represents the difference between the mth result and the
ith confirmed result by calculating the sum of the value
difference between each corresponding pixel of the two
images. The segmented results of different cells are rarely
overlapped, and small CIci∕m values can be obtained,
while segmented regions of the same cell are largely over-
lapped, and the CIci∕m values can be close to one. Thus,
threshold T3 is used to judge whether the segmented re-
gions are repeated. If the calculated cell repetition indexes
all satisfy the condition of smaller than T3 after compar-
ing it with the confirmed results, the mth result will be
added into the confirmed cell sequence; otherwise, it will
be removed as a repeated segmented result. Threshold T3
is chosen as 0.6 to remove repeated segmented results.
To validate the algorithm, a phantom study is designed

to test the accuracy of the algorithm. The initial phantom
image is shown in Fig. 5(a), which contains RPE-like

structures created by generating a quasi-symmetric hex-
agonal array using MATLAB. The pixel value is one
within the cell region and zero within the intercellular
region. The dimensions of the image array and pixel
sampling were similar to those in real PAM images.

Phantom images of various signal-to-noise ratios (SNRs)
are utilized to test the algorithm. Since the PAM image is
shown as the maximum-amplitude-projection (MAP) im-
age in which each pixel corresponds to the maximum value
of the PA signal at each imaging position, we first simu-
lated the PA signal at each pixel of the initial phantom
image, and then we added white Gaussian noises to form
a noisy PA signal. The noisy phantom image can be
acquired by getting the maximum value of the noisy simu-
lated PA signal at each pixel position. The SNR of the
noisy phantom image is defined as the ratio between the
mean pixel value of the cell region and the intercellular
background. A typical acquired RPE cell amplitude pro-
file in a PAM image is shown in the top of Fig. 5(b), which
is similar to the simulated cell amplitude profile with a
12 dB SNR. Simulated cell amplitude profiles under differ-
ent SNRs are also illustrated in the bottom of Fig. 5(b),
and the identification of adjacent cells is increasingly
difficult as the SNR drops.

The segmentation algorithm was tested using phantom
images under different SNRs with the normalized 5 and
3 dB phantom images shown in Figs. 5(c) and 5(e).
The segmented result of the 5 dB phantom image shows
clear and complete hexagonal cell morphology, while
irregular and incomplete segmented cell regions appear
when the SNR is reduced to 3 dB, as shown in Figs. 5(d)
and 5(f). To quantify the algorithm performance, we made
a statistic analysis of the segmented cell number and area
under different noise levels. The cell number and area were
acquired by calculating the number of segmented regions
and the pixel number within each segmented region,
respectively. The segmentation under each noise level
was repeated four times to get the statistical result. As
shown in Figs. 5(g) and 5(h), when the SNR of the phan-
tom image is 5 dB or larger, the cell number and area re-
main consistent and show no significant differences. When
the SNR is 4 dB, the segmented cell number is still
constant, while cell area becomes smaller, which means in-
complete cell regions are segmented due to the increased
noise level. When the SNR is below 4 dB, the segmented
cell number starts to change, and the cell area becomes
even smaller and more inconsistent, as the algorithm
may miss several cells or segment more than one region
within one single cell in phantom images with a very
low SNR. Since the SNR is similar to 12 dB in real PAM
image, as shown in Fig. 5(b), the automatic segmentation
algorithm has the capability of correctly segmenting most
RPE cells and obtaining reliable cell information.

A piece of the RPE layer stripped from a normal porcine
eye was used for PAM imaging. The PAM image and the
subsequent segmentation and quantitative results of RPE
cells are shown in Fig. 6. The PAM image is the MAP
image in which each pixel value is calculated as the

Fig. 5. Cell segmentation for numerical phantom images of simu-
lated RPE cells. (a) Initial phantom image with a value of one
within the cell region and zero within the intercellular region.
(b) Typical acquired PAM signal amplitude profile of RPE cells
along five adjacent cells and simulated signal amplitude profiles
along the red line in (a) under the SNRs of 12, 5, and 3 dB,
respectively. (c), (e) Phantom MAP images of simulated RPE
cells under 5 and 3 dB SNRs. (d), (f) cell segmentation results for
phantom images of (c) and (e), respectively. (g), (h) Statistical
results of the cell number and area under a changing SNR from 6
to 2 dB.
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maximum value of the acquired PA signal at the
corresponding scanning position. The segmentation result
of all of the complete cells in Fig. 6(a) is shown in Fig. 6(b).
Most segmented cells show typical morphological charac-
teristics of the RPE cell and match the original cell
regions, but there are still some cells that may not be seg-
mented completely due to the low SNR within a local re-
gion of the PAM image.
After segmentation, the cell area is acquired by calcu-

lating the area of the segmented region. The cell intensity
that mainly reflects the melanin content in the RPE cell is
calculated by the sum of the PA signal amplitudes within
the segmented cell region. In Fig. 6(c), a statistical analy-
sis of the cell area is presented. The area distribution is
centered at 200 μm2, which is similar to the result of
the normal human eye[23]. The relationship between the
cell area and intensity is shown in Fig. 6(d). Two regions
of the stripped RPE were imaged and segmented for quan-
titative analysis under the same experimental conditions
and segmentation parameters. The cell area and intensity
are linearly related for normal porcine RPE cells, shown as
the fitted red and blue lines (R2 > 0.7). The two fitted
lines show similar slopes with a mutual difference of less
than 5%, which proves the consistency of the PAM imag-
ing and segmentation algorithm. Since the RPE cell
suffers from morphology changes and melanosomes leak-
ing at the early state of the diseases such as AMD[5], the
calculated distributions of cell area, intensity, and their
correlation can be promising indicators for detecting cell
abnormality caused by diseases.
In conclusion, we develop an improved region growing

method for RPE cell analysis in PAM images to realize
completely automatic cell segmentation and feature

calculation of both cell area and component content,
which can have the potential of detecting cell abnormality
and early retinal diseases in a future study. Furthermore,
this method may also be applied in other cytological stud-
ies when the judging condition in the algorithm is adjusted
correspondingly.

This work was supported by the National Natural
Science Foundation of China (NSFC) (Nos. 81171377,
61273368, 61472247, 61307015, and 61675134) and the
Open Research Fund of State Key Laboratory of Tran-
sient Optics and Photonics, Chinese Academy of Sciences
(No. SKLST201501).

References
1. O. Strauss, Physiol. Rev. 85, 845 (2005).
2. D. A. Thompson and A. Gal, Prog. Retin. Eye Res. 22, 683 (2003).
3. A. Roorda, Y. Zhang, and J. L. Duncan, Invest. Ophthalmol. Vis. Sci.

48, 2297 (2007).
4. D. Besch, H. Jägle, H. P. N. Scholl, M. W. Seeliger, and E. Zrenner,

Vision Res. 43, 3095 (2003).
5. E. C. Zanzottera, J. D.Messinger, T. Ach, R. T. Smith, K. B. Freund,

and C. A. Curcio, Invest. Ophthalmol. Vis. Sci. 56, 3253 (2015).
6. L. V. Wang and S. Hu, Science 335, 1458 (2012).
7. J. Yao and L. V. Wang, Laser Photon. Rev. 7, 758 (2013).
8. T. Liu, M. Sun, N. Feng, Z. Wu, and Y. Shen, Chin. Opt. Lett. 13,

091701 (2015).
9. D. Cai, Z. Li, and S. Chen, Chin. Opt. Lett. 13, 101101 (2015).
10. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A.

Puliafito, and H. F. Zhang, Opt. Express 18, 3967 (2010).
11. W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi,

R. A. Linsenmeier, S. Jiao, and H. F. Zhang, Sci. Rep. 4, 6525 (2014).
12. W. Song, Q. Wei, R. Zhang, and H. F. Zhang, Chin. Opt. Lett. 12,

051704 (2014).
13. W. Liu and H. F. Zhang, Photoacoustics 4, 112 (2016).
14. C. Zhang, K. Maslov, and L. V. Wang, Opt. Lett. 35, 3195 (2010).
15. L. Li, C. Dai, Q. Li, Q. Zhao, X. Jiang, X. Chai, and C. Zhou, Opt.

Lett. 40, 4448 (2015).
16. M. Jiang, X. Zhang, C. A. Puliafito, H. F. Zhang, and S. Jiao, Opt.

Express 18, 21770 (2010).
17. X. Gu, N. J. Neric, J. S. Crabb, J. W. Crabb, S. K. Bhattacharya,

M. E. Rayborn, J. G. Hollyfield, and V. L. Bonilha, PLoS ONE 7,
e38673 (2012).

18. B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar, and C. L. Luengo
Hendriks, BMC Med. Imaging 15, 13 (2015).

19. F. Scarpa and A. Ruggeri, Cornea 35, 1222 (2016).
20. S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A.

Izatt, and S. Farsiu, Biomed. Opt. Express 4, 924 (2013).
21. S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu,

Biomed. Opt. Express 3, 1127 (2012).
22. P. Rangel-Fonseca, A. Gómez-Vieyra, D. Malacara-Hernández,

M. C. Wilson, D. R. Williams, and E. A. Rossi, J. Opt. Soc. Am.
A 30, 2595 (2013).

23. E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R.
Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M.
Chung, Biomed. Opt. Express 4, 2527 (2013).

24. N. S. Alexander, G. Palczewska, and K. Palczewski, Biomed. Opt.
Express 6, 3032 (2015).

25. R. Adams and L. Bischof, IEEE Trans. Pattern Anal. Mach. Intell.
16, 641 (1994).

26. E. Meijering, IEEE Signal Proc. Mag. 29, 140 (2012).

Fig. 6. PAM imaging of RPE and quantitative results of RPE
cells. (a) MAP image of RPE cells. (b) Segmented result of all
the complete cells in (a). (c) Statistical result of cell area for
all cells in (b). (d) Correlation between the cell area and intensity
with the fitted results shown as the red and blue lines. Bar:
15 μm.
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