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We investigate the transitions between energy levels and parity symmetry in an effective two-level polar mol-
ecule system strongly coupled with a quantized harmonic oscillator. By the dressed-state perturbation theory,
the transition diagrams between the dressed-state energy levels are presented clearly and show that the
odd (even) parity symmetry is broken by the permanent dipole moment (PDM) of the polar molecules. By
the analytical and numerical methods, we find that when the coupling strength and the PDM increase, the more
frequency components are induced by the counter-rotating terms and PDM.
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As one of the simplest models that deals with the matter–
light interaction, an effective two-level quantum system
can be coupled with a quantized harmonic oscillator. This
ubiquitous model is applied to a great variety of physical
systems, ranging from quantum optics to quantum infor-
mation, such as circuit and cavity quantum electrodynam-
ics (QED)[1–6]. One of the most well-known is the quantum
Rabi model[7,8], which can be reduced to solvable dynamics
called the Jaynes–Cummings (JC) model[9,10] in the
rotating wave approximation (RWA), where the counter-
rotating terms (CRTs) are ignored[11]. The RWA is valid
when the coupling strength λ between the two-level sys-
tem and the cavity field is far smaller than the cavity field
frequency ωc and the transition frequency ω0 of the two-
level system[12]. The JC model possesses a continuous Uð1Þ
symmetry, however, which is broken down to Z2 (the
Abelian group) in the Rabi model due to the presence
of the CRT[13]. This Z2 symmetry, usually called parity,
generates the linear combinations of quantum states such
that they are either an even or an odd parity[13], the eigen-
values of whose operator are �1. The parity symmetry of
the model is useful for understanding how its dynamics
evolve inside the Hilbert space[14]. In the Rabi model of
the cavity QED, the quantum states of the system can
be split into two unconnected subspaces or parity chains.
Neighboring states within each parity chain can be con-
nected via the CRT [or rotating terms (RTs)][15]. However,
this parity symmetry can be broken, such as the local bias
fields[16] or the Ising interaction[17].
Recent progresses draw the extensive attention to the

ultrastrong-coupling (USC) regime in the superconduct-
ing circuit cavity QED with the normalized coupling
strength λ∕ωc reaching 0.1[18,19], where the CRT of the

interaction is no longer ignored and induces the Bloch–
Siegert (B-S) shift, and the population dynamics no longer
show strictly periodic Rabi oscillation, but complicated
chaotic behavior instead[20–22]. Moreover, in the strong-
coupling regime, we have demonstrated that the perma-
nent dipole moment (PDM) term comparable with the
CRT cannot be neglected in the molecule–cavity coupling
system[23]. In the USC regime, the parity symmetry shows
the advantage in the aspect of the generation and
reconstruction of arbitrary states[24]. Recently, Garziano
et al.[25] studied a quantum circuit constituted by a
coplanar resonator interacting with a number of flux qu-
bits in the USC regime and found that the parity sym-
metry of a qubit (an artificial atom) with an even
potential is broken by the interaction with a resonator
field displaying a nonzero vacuum (ground–state) expect-
ation value.

Nowadays, the strong-coupling regime has also been
reached in the molecule coupled with a microcavity,
especially the organic molecule microcavity[26]. Control
of molecular excitation during the plasma generation of
a femtosecond laser pulse has been reported[27]. The polar
molecule–cavity coupling system includes the RT, CRT,
and PDM term. As a unique property of the polar
molecule, the PDM has been studied and measured
experimentally[28]. The effects of both the PDM and
CRT on the energy level and stationary state wave func-
tion of the system have been studied in our earlier work[23].
In this Letter, based on the dressed-state perturbation
theory, we study the effects of the CRT and PDM terms
on the transitions between dressed-state energy levels, the
parity symmetry, and the dynamical evolution of a two-
level cavity QED system beyond the RWA. The results
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show that the CRT induces the transitions within an in-
dependent parity chain, while the transitions between the
two parity chains are induced by the PDM term. There-
fore, for the polar molecule, the parity symmetry is broken
by the PDM term. In addition, we analyze the frequency
components of the transitions among more dressed states
induced by the CRT and PDM terms, and show that the
population evolution contains more oscillatory frequen-
cies, not just the single Rabi frequency of the JC model
within the RWA. We believe that our results will be help-
ful for further understanding the cavity QED in the regime
of the polar molecule–light interaction.
The system we consider here is an effective two-level

quantum system coupled with a quantized cavity field.
The two-level system can be a single atom (α ¼ 0) or
molecule (α ≠ 0) with the ground and first excited states.
The Hamiltonian can be described by[29]

H ¼ ωca†a þ 1
2
ω0σz − λðασz þ σxÞða† þ aÞ; (1)

where a (a†) is the annihilation (creation) operator of the
single-mode bosonic field, σx;z are the usual Pauli spin op-
erators, λ is the coupling strength, α ¼ μee−μgg

2μge
is the nor-

malized permanent dipole difference with the dipole
moment μμν (μ; ν ¼ g; e)[30–32], and for simplicity, here we
have already set the unit ℏ ¼ 1. The model describes a
polar molecule–cavity coupling system, which can be re-
duced to the Rabi model for α ¼ 0 or the JC model with
α ¼ 0 and the RWA.
According to the Schrödinger equation and the dressed-

state perturbation theory, where the interaction Hamilto-
nian of both the PDM and the CRT are viewed as a
perturbation term[23], we have obtained the analytical en-
ergy levels Eg;0, E�

n and the wave function jΨg;0i, jΨ�
n i of

the ground state and excited states in the perturbation
case, where jΨ�

n i (E�
n ) is the summation of the zero-order

perturbation term jψ�
n i (ε�n ) and the kth-order perturba-

tion term jψ�ðkÞ
n i (ε�ðkÞ

n ). By comparison, we have found
that the perturbation results are in good agreement with
the numerical simulation in the steady state[23]. Here, the
system is initially prepared in its excited state, and the
cavity field is in the vacuum state, i.e., jΨð0Þi ¼ je; 0i.
By using the eigenvectors and eigenvalues, the dynamical
wave function of the Hamiltonian [Eq. (1)] can be
expressed as

jΨðtÞi ¼ Ce−iEg;0t jΨg;0i

þ
X∞

k¼0

ðAke
−iEþ

k t jΨþ
k i þ Bke

−iE−
k t jΨ−

k iÞ; (2)

where the expressions of Eg;0, jΨg;0i, E�
k and jΨ�

k i can be
calculated and found in Ref. [23]. To simplify the problem
concerned, here we consider the wave function up to
the first-order perturbation and the energy up to the sec-
ond-order perturbation. The coefficients C ¼ hΨg;0jΨð0Þi,
Ak ¼ hΨþ

k jΨð0Þi, and Bk ¼ hΨ−
k jΨð0Þi ðk ¼ 0; 1; 2Þ can be

found in Ref. [23] and satisfy the normalization condition.
For the validity of the dressed-state perturbation theory,
the parameters used here should satisfy the conditions
of the perturbation. Therefore, the matrix element of the
perturbation operator between the perturbing state jφ�

n i
and the unperturbed state jφ�

k i should be much smaller
than the energy difference between the two states:��� V��

nk
ε�n −ε�k

��� ≪ 1[23]. Thus, the power series of E and jΨi will

converge quickly. Through calculation, our theory of up
to a second-order correction is valid in a certain range
of both the normalized coupling strength f ¼ λ∕ωc and
the α value, where f ≪ 0.4, α ≪ 2

ð2þ ��
3

p Þf − 2 in the resonant

case, and the range of validity of α narrows as the f value
increases.

Using the explicit form of wave functions, we can obtain
the population difference at an arbitrary time t as

hσzðtÞi ¼Dn0g0 cos½ðE−
0 −Eg;0Þt�

þDp0g0 cos½ðEþ
0 −Eg;0Þt�þDn1g0 cos½ðE−

1 −Eg;0Þt�
þDp1g0 cos½ðEþ

1 −Eg;0Þt�þDn2g0 cos½ðE−
2 −Eg;0Þt�

þDp2g0 cos½ðEþ
2 −Eg;0Þt�þDp0n0 cos½ðEþ

0 −E−
0 Þt�

þDn1n0 cos½ðE−
1 −E−

0 Þt� þDp1n0 cos½ðEþ
1 −E−

0 Þt�
þDn2n0 cos½ðE−

2 −E−
0 Þt� þDp2n0 cos½ðEþ

2 −E−
0 Þt�

þDn1p0 cos½ðE−
1 −Eþ

0 Þt� þDp1p0 cos½ðEþ
1 −Eþ

0 Þt�
þDn2p0 cos½ðE−

2 −Eþ
0 Þt� þDp2p0 cos½ðEþ

2 −Eþ
0 Þt�

þDp1n1 cos½ðEþ
1 −E−

1 Þt� þDn2n1 cos½ðE−
2 −E−

1 Þt�
þDp2n1 cos½ðEþ

2 −E−
1 Þt� þDn2p1 cos½ðE−

2 −Eþ
1 Þt�

þDp2p1 cos½ðEþ
2 −Eþ

1 Þt�þDp2n2 cos½ðEþ
2 −E−

2 Þt�;
(3)

where the subscripts of the coefficients j ¼ n; p are labeled
“−” and “þ”, respectively. The different coefficientsDjkj 0k0

with the different subscripts represent the probability
amplitudes of the transitions between the various per-
turbed energy levels. Eq. (3) shows the 21 different tran-
sitions with the 21 different frequencies, which are
graphically plotted in Fig. 1.

From Ref. [15], we know that the system dynamics in-
side the Hilbert space can split into two unconnected sub-
spaces or parity chains consisting of the dressed states. By
using the parity chains, here we plot the transitions be-
tween the perturbed dressed states in Fig. 2, where the
transitions caused by RT, CRT, and PDM are labeled.
It is worth noting that the transitions caused by RT only
exist between jφþ

2ji and jφ−
2ji (j ¼ 0; 1; 2;…), whereas the

CRT can induce the transitions between the neighboring
states in the single parity chain and cannot cause the
transitions between the two states in two different parity
chains. More importantly, the PDM can lead to the
transitions between the two different parity chains, i.e.,
the two unconnected parity chains are connected by the
PDM. Therefore, the parity symmetry is conserved in
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the JC and Rabi models, however, they are broken in the
polar molecule–cavity coupling model. This point is an im-
portant result of our work. In the following, we will
analyze the frequencies in the these transitions.
The transition frequency comes from the difference be-

tween both energy levels, hence, we will study these tran-
sitions by the population inversion of the two-level.
Initially, when the quantum field is in the Fock state
and the two-level system with α ¼ 0 is in the excited state,
it is well-known that in the limit of the JC model the pop-
ulation inversion of the two-level system shows strictly
periodic Rabi oscillation, whose Rabi frequency Ωnδ ¼���������������������������������
δ2 þ 4λ2ðn þ 1Þ

p
depends on the photon number n of

the initial cavity field and the detuning δ ¼ ω0 − ωc
[33].

In the strong-coupling case, the population dynamics of
the Rabi model beyond the RWA has also been theoreti-
cally studied and shows that the structure of the Rabi
oscillations is greatly modified[20]. Yet, the effects of the
CRT and PDM on the dynamical evolution of the

population are not clearly given to the best of our knowl-
edge. Here, based on the dressed-state perturbation
theory, taking into account the contributions of both
the CRT and PDM, we not only find more oscillating
frequencies in the population difference, but it also clearly
shows the transition relations between the dressed states.

The population difference hσzðtÞi is calculated and plot-
ted in Fig. 3 for f ¼ λ∕ωc ¼ 0.01; 0.1 with the different α.
By comparison, we find that the analytical results agree
quite well with the numerical ones within the applicable
regime of the perturbation theory for the different f
and α. When α increases beyond the perturbation regime,
the analytical results begin to gradually deviate from the
numerical ones for the long time scale. It is worth noting
that the valid regime of α becomes narrow, as the coupling
strength f increases in the perturbation regime, as in the
previous discussions. Apparently, the dressed-state per-
turbation theory can give the appropriate dynamics in
the coupling regime λ < 0.1ωc and the normalized perma-
nent dipole difference α < 1.

In the case of the polar molecule with α ≠ 0, the popu-
lation inversion shows similar behavior in the Rabi type
(α ¼ 0) oscillation, as shown in Fig. 3, however, it actually
contains more oscillatory frequencies than those in the
case of α ¼ 0 due to the effects of the PDM. In Fig. 4,
we give the analysis of the frequency components in the
transitions based on the Fourier transform of the popula-
tion difference hσzðtÞi by both the analytic and numerical
methods.

In the case of the two-level atom Rabi model, where the
CRT induces the transition along two independent parity
chains of the Hilbert space (as shown in Fig. 2) coincident
with the result of Ref. [15], there are six frequency compo-
nents induced by the RT and CRT altogether. While in
the polar molecule case, the parity symmetry is broken
by the PDM[34], i.e., the two parity chains initially inde-
pendent in the two-level atomRabi model are now coupled
together by the PDM. The involvement of the PDM terms
will cause the transitions among the more dressed states,
such as jφ�

0 i↔jφg;0i, jφ�
0 i↔jφ�

1 i, and jφ�
1 i↔jφ�

2 i, as shown

Fig. 1. Transitions between the perturbed energy levels with the
first-order perturbed dressed states. The three terms in the
parentheses on the right side of the figure separately represent
the unperturbed dressed state and the dressed states caused
by the CRT and PDM. The arrows represent the 21 frequency
components, where the main probability transitions are labeled
by the alphabet “A, B, …, J”.

Fig. 2. Transitions between the dressed-state energy levels caused by the RT, CRT and, PDM in the parity chains, respectively.
The initial state of the system starts is je; 0i.
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in Fig. 2. In the regime of the perturbation theory we con-
sider that 15 frequency components are introduced
additionally due to the PDM, i.e., E�

1 − E�
0 , E

þ
1 − E−

1 ,
E�

0 − Eg;0, E�
1 − Eg;0, E�

2 − E�
1 , E�

2 − Eg;0. There are
21 components induced by the RT, CRT, and PDM alto-
gether, as shown in Figs. 1 and 4(a). Yet, due to far less
proportions of higher-order dressed states, not all of them
are shown clearly in Fig. 4. It is observed that the domi-
nating frequency is still Eþ

0 − E−
0 (frequency peak A),

however, the small peaks of Eþ
1 − E−

1 and Eþ
2 − E−

2
(labeled by B) on the right side of peak A (the transition
Eþ

0 − E−
0 ) are still too small to be submerged. There are

ten frequency peaks around w ¼ 1, among which four of
the second-highest frequencies are E−

1 − Eþ
0 , E−

1 − E−
0 ,

Eþ
1 − Eþ

0 , and Eþ
1 − E−

0 , corresponding to the frequency
peaks G, H, I, and J from left to right, and the other
six frequency peaks E−

2 − Eþ
1 , E−

0 − Eg;0, E−
2 − E−

1 ,
Eþ

2 − Eþ
1 , E

þ
0 − Eg;0, and Eþ

2 − E−
1 are too small to be dis-

tinguished. There are six frequency peaks around w ¼ 2,
among which four of the second-highest frequencies are
E−

2 − Eþ
0 , E

−
2 − E−

0 , E
þ
2 − Eþ

0 , and Eþ
2 − E−

0 , correspond-
ing to frequency peaks C, D, E, and F from left to right,

and the other two frequency peaks E−
1 − Eg;0 and Eþ

1 −

Eg;0 are too small to be distinguished. The two small
frequency peaks around w ¼ 3 are E�

2 − Eg;0.
For the polar molecule–cavity QED, the transition

relations among dressed states are different with the case
of the atom cavity QED (α ¼ 0) due to the effect of the
PDM. Taking the dominating frequency Eþ

0 − E−
0 as an

example, the state of Eþ
0 is composed of jφþ

0 i, jφ�
2 i, jφg;0i

and jφ�
1 i (where jφþ

0 i is dominant, jφ�
2 i comes from the per-

turbation of the CRT, and jφg;0i, jφ�
1 i come from the per-

turbation of the PDM), as shown in Fig. 1, while the
state ofE−

0 is composed of jφ−
0 i, jφ�

2 i, jφg;0i and jφ�
1 i (where

jφ−
0 i is dominant, jφ�

2 i comes from the perturbation of the
CRT, and jφg;0i, jφ�

1 i come from the perturbation of the
PDM). So, the frequency peakEþ

0 − E−
0 mainly comes from

the transition jφþ
0 i↔jφ−

0 i, which is dominant and caused by
the RT interaction. Besides, the frequency peak Eþ

0 − E−
0

also includes the transition jφ�
0 i↔jφg;0i, jφ�

1 i, jφ�
2 i

and jφ�
1 i↔jφg;0i, jφ�

2 i, as shown in Fig. 2. Then, taking
another frequency peak E−

1 − Eþ
0 as another example,

the state of E−
1 is composed of jφ−

1 i, jφg;0i, jφ�
3 i, jφ�

0 i
and jφ�

2 i (where jφ−
1 i is dominant, jφg;0i, jφ�

3 i come from
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Fig. 3. Population differences hσzðtÞi at the resonant case for dif-
ferent normalized coupling strengths f ¼ λ∕ωc with different
normalized permanent dipole difference α. (a) f ¼ 0.01, α ¼ 1; 5
(from top to bottom). (b) f ¼ 0.1, α ¼ 0.5; 1 (from top to bot-
tom). Our dressed-state perturbation theory (blue dot–dashed
lines) are compared with the numerical simulation results (red
solid lines).
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Fig. 4. Fourier transform of the population difference at the res-
onance for different normalized permanent dipole difference α
with λ ¼ 0.1ωc. (a) α ¼ 0.5; (b) α ¼ 1. The ten frequency peaks
A, B, C, D, E, F, G, H, I, and J correspond to the transitions
between the perturbed energy levels in Fig. 1. Our dressed-state
perturbation theory (blue dot–dashed lines) are compared to the
numerical simulation results (red solid lines).
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the perturbation of the CRT, and jφ�
0 i, jφ�

2 i come from
the perturbation of the PDM), so the frequency peakE−

1 −

Eþ
0 mainly comes from the transition jφ−

1 i↔jφþ
0 i, which

has far less proportion because it is caused by the pertur-
bation of the PDM. Besides, the frequency peak E−

1 − Eþ
0

also includes the transition jφ�
0 i↔jφg;0i, jφ�

1 i, jφ�
2 i

and jφ�
1 i↔jφg;0i, jφ�

2 i, jφ�
1 i, jφ�

2 i↔jφ�
3 i, jφ−

0 i↔jφþ
0 i,

jφ−
1 i↔jφþ

1 i, and jφ−
2 i↔jφþ

2 i, as shown in Fig. 2.We can ob-
tain the transition relations among the dressed states in-
cluded theoretically in the 21 frequency peaks. It is
expected from Fig. 4(b) that when the α value increases be-
yond the valid regime of the perturbation theory, the more
frequency componentswill appear,which correspond to the
transitions between higher dressed-state energy levels.
In conclusion, we investigate the symmetry and its

breaking of the parity chains in an effective two-level
molecule–cavity QED system by the dressed-state pertur-
bation theory. We find that the RT and CRT do not dis-
turb the parity symmetry, whereas, the PDM can break
the parity symmetry and bridge a transition between
the even and odd parity chains. Because of the effects
of the RT, CRT, and PDM, more frequency components
are induced into the Rabi frequency, which is modified,
and not the strict Rabi oscillation, as shown in the JC
model within the RWA. In the frequency domain of the
Fourier transform, we find that more induced frequencies
appear as the coupling strength and the PDM increase.
In addition, we give the clear transition diagram and
one-to-one correspondence between the frequency and
the transition, which is helpful for further understanding
the cavity QED in the regime of the atom and molecule–
light interaction.
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