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Modal analysis of the 1 × 3 highly efficient reflective triangular grating operating in the 800 nm wavelength
under normal incidence for TE polarization is presented in this Letter. The rigorous coupled wave analysis
and simulated annealing algorithm are used to design this beam splitter. The reflective grating consists of a
highly reflective mirror and a transmission grating on the top. The mechanism of the reflective triangular grating
is clarified by the simplified modal method. Then, gratings are fabricated by direct laser writing lithography.
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In a high-power laser system, reflective gratings with high
efficiency are needed[1]. Reflective gratings are also used
in various fields, such as beam combining, pulse compres-
sion[2], infrared spectroscopy[3], and femtosecond lasers[4].
Metal dielectric reflection gratings as three-channel beam
splitters can be widely used in optical systems of hologra-
phy and interferometers[5]. The beam splitters are key el-
ements and have been widely researched and used[6,7].
However, conventional beam splitter gratings, such as
Dammann gratings[8], have some disadvantages, including
low efficiency. The efficiency of traditional Dammann gra-
tings is about 75%[9]. Such an efficiency is not high enough
to meet the high-efficiency requirement of high-power la-
ser systems. Hence, subwavelength Dammann gratings
with higher efficiencies should be taken into consideration.
The 1 × 3 Dammann grating is designed and optimized

by the rigorous coupled wave analysis (RCWA)[10] and
simulated annealing (SA) algorithm[11,12]. SA is a probabi-
listic technique that can approximate the global optimum
of a given function. However, the RCWA is a purely
numerical method, and it seems difficult to know the
mechanism of triangular gratings by only using a numeri-
cal method. Therefore, for further understanding, we use
the simplified modal method to explain the interference
process in this grating. The modal method was first devel-
oped by Rytov and Collin[13,14], and it was Botten et al.[15]

who first applied it to dielectric gratings. The simplified
modal method has been used to clarify the mechanisms
of different gratings[16–22]. Zheng et al. analyzed the trans-
mission of triangular-groove gratings by the simplified mo-
dal method[17]. The expression of transmission the 1 × 3
Dammann grating under normal incidence has also been
derived by the simplified modal method[18]. But this
expression is not suitable for reflective gratings. Reflective
gratings have only been analyzed in a Littrow moun-
ting[21,22] with the simplified modal method by Hu et al. In
addition, as we know, this method has already been

applied to analyze beam splitting gratings under the sec-
ond Bragg incidence[20]. However, a simplified modal analy-
sis of reflective triangular gratings under normal incidence
has not been done before to the best of our knowledge.

In this Letter, the metal-mirror-based reflective grating
consists of a highly reflective mirror and a transmission
grating on the top. By using the grating modes and ignor-
ing the absorption of the mirror and the evanescent wave,
the expressions for the diffraction efficiency of the reflec-
tive grating can be derived. The diffraction efficiency of
the optimized grating is higher than 98% at the wave-
length of 800 nm, and these Dammann gratings are
fabricated by direct laser writing (DLW) lithography.

Figure 1 is the schematic of this 1 × 3 reflective triangu-
lar grating for TE polarization under normal incidence; it
is composed of a grating layer (depth h and index
n2 ¼ 1.65), a thin gold layer (depth da ¼ 200 nm and in-
dex na), and a fused-silica substrate (index ns). T repre-
sents the period of the grating, and n1 is the refractive
index of the incident medium, which is n1 ¼ 1 in air.

This kind of grating is similar to a gold grating. Hence,
the threshold of it is about 0.6 J∕cm2 in a high-power laser

Fig. 1. Schematic of grating.
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system[23]. The RCWA in association with the SA algo-
rithm is adopted to calculate and optimize this structure.
The set ½T ; h� is chosen as the optimization parameters.
The merit function (MF) is

MF ¼ 1
M

X
λ

�P1
p¼−1 ðηp − ηavÞ2P1

p¼−1 ηp

�1∕2
; (1)

ηav ¼
1
3

X1
p¼−1

ηp; (2)

where ηp is the reflective efficiency of the pth order calcu-
lated by the RCWA, and ηav is the average value of the
efficiencies of the three orders. M is the number of wave-
length points from 780 to 820 nm.
The RCWA and SA algorithm are used to make the

minimization subject to MF. The smaller the value of MF
is, the closer the iteration point is to the optimal param-
eter. After optimization, we obtained the optimal value
[1290, 558]. The unit is nanometer. The MF with optimal
values may not be the global minimum. But the efficiency
and uniformity of the designed gratings with the optimal
values can meet our requirements. The efficiencies of the
zeroth order and the first order are 32.24% and 33.21%
in theory.
Figure 2 shows the efficiencies of the zeroth and first or-

ders for TE polarization versus the wavelength under nor-
mal incidence. The efficiencies of the �1st are equal under
normal incidence. From 780 to 820 nm, the efficiencies are
all above 30%. Especially around the wavelength of
800 nm, the efficiencies of the three orders are nearly equal,
which demonstrates the good ability of the beam splitting.
The efficiency and uniformity will change if the groove

depth or period deviates from the optimized values.
Figure 3 shows the contour of the ratio of efficiency of
the first order and zeroth order versus the period T
and depth h. From Fig. 3, it can be seen that the ratio
can be nearly equal to 1 and the gratings can be done with

a period ranging from 1200 to 1300 nm and a depth rang-
ing from 480 to 620 nm. Hence, around wavelength
800 nm, there is a large tolerance, which provides conven-
ience for fabrication.

For further understanding, we use the simplified modal
method to explain the interference process in this grating.
According to the simplified modal method, when the
period of a grating is of the order of the wavelength,
the diffraction of the grating could be predicted by a
few propagating grating modes. Since the contrast of
the refractive indices is low (n2∕n1 < 2), the modes of
the gratings can be regarded as propagating independ-
ently. For a triangular grating, it can be approximated
by a stack of lamellar gratings. Compared to the Littrow
incidence, the expression of efficiencies of zeroth and �1st
orders are more complicated for TE polarization under
normal incidence.

The effective indices of every lamellar grating can be
found by solving the following eigenfunction equation
for TE polarization:

cos½k1ð1− f ÞT � cosðk2f TÞ

−
k21 þ k22
2k1k2

sin½k1ð1− f ÞT � sinðk2f TÞ ¼ cosðαTÞ; (3)

ki ¼ k0
�������������������
n2
i − n2

eff

q
; i ¼ 1; 2; (4)

with α ¼ k0 sin θ and cosðαTÞ ¼ 1, with incidence angle
θ ¼ 0° and the wavenumber k0 ¼ 2π∕λ in a vacuum.
For this triangular-groove grating, the duty cycle f goes
from 0 (top) to 1 (bottom). The average mode indices
of mode 0, mode 1, and mode 2 are shown as follows:

n̄0eff ¼
X
i

ni;0effhi∕h; (5)

n̄1eff ¼
X
i

ni;1effhi∕h; (6)
Fig. 2. Diffraction efficiencies of the zeroth and first orders.

Fig. 3. Contour of the efficiency ratio between the first and the
zeroth diffractive orders versus the period and depth.
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n̄2eff ¼
X
i

ni;2effhi∕h; (7)

where hi is the depth of the ith lamellar grating, and ni;0eff ,
ni;1eff , and ni;2eff are the effective indices of mode 0, mode
1, and mode 2 of the corresponding layer. Hence, we can
obtain the average mode indices of mode 0, mode 1, and
mode 2 with a period of 1290 nm and a wavelength of
800 nm, and they are equal to 1.48733, 1.24690, and
1.08297, respectively.
A reflective grating consists of a transmission grating

and a highly reflective mirror. The propagating and
diffraction in the grating are shown in Fig. 4. When the
reflective grating is illuminated under normal incidence,
firstly, three transmission diffractive orders occur. TA,
TB, and TC represent the diffractive orders of the first
diffraction.
According to the diffraction under normal incidence[18],

the complex amplitudes of three orders can be derived as

e0 ¼
1
T

Z
T

0
½t0u0ðxÞe−ikz n̄0effh þ t2u2ðxÞe−ikz n̄2effh�dx; (8)

e�1 ¼
1
T

Z
T

0
½t0u0ðxÞe−ikz n̄0effh þ t2u2ðxÞe−ikz n̄2effh�dx; (9)

where tm can be derived from the overlap integral, and
umðxÞ is the electric field of mode m (m ¼ 0; 2), with kz ¼
2π∕λ and kx ¼ 2π∕T .
Then, the diffractive orders are reflected back by the Au

layer and diffracted again by the grating with nine diffrac-
tion waves denoted by 1 to 9. According to the grating
equation, the zeroth order diffracts again under normal
incidence, while the �1st orders diffract again under
the second Bragg incidence. Hence, the expressions of
the complex amplitudes of the second diffraction under
normal incidence are the same as Eqs. (8) and (9), and
the others are derived from the diffraction under the sec-
ond Bragg incidence. The modal method analysis has been
done under the second Bragg incidence[20]; therefore, the
complex amplitudes of the three orders can be written as

ee−1 ¼
1
T

Z
T

0
½u0ðxÞe−ikzðn̄0eff−n̄2effÞh þ u2ðxÞ�dx; (10)

ee0 ¼
1
T

Z
T

0
½ðu0ðxÞe−ikzðn̄0eff−n̄2effÞh þ u2ðxÞÞ cosðkxxÞ

þ iu1ðxÞe−ikzðn̄1eff−n̄2effÞh sinðkxxÞ�dx; (11)

ee−2 ¼
1
T

Z
T

0
½ðu0ðxÞe−ikzðn̄0eff−n̄2effÞh þ u2ðxÞÞ cosðkxxÞ

− iu1ðxÞe−ikzðn̄1eff−n̄2effÞh sinðkxxÞ�dx:
(12)

So, considering twice diffraction, the complex ampli-
tudes Rj of the nine diffraction waves can be obtained,
where j is from 1 to 9. The expressions are shown as
follows: R1 ¼ e1 � ee0 � expðiaÞ, R2 ¼ e1 � ee−1 � expðiaÞ,
R3 ¼ e1 � ee−2 � expðiaÞ, R4 ¼ e0 � e1 � expðiaÞ, R5 ¼ e20�
expðiaÞ, R6 ¼ e0 � e1 � expðiaÞ, R7 ¼ e1 � ee−2 � expðiaÞ,
R8 ¼ e1 � ee−1 � expðiaÞ, and R9 ¼ e1 � ee0 � expðiaÞ,
where a is the phase difference.

The interference between diffraction waves R1, R4, and
R7 will determine the diffraction efficiency of the positive
first order of this reflective grating, and that between dif-
fraction waves R2, R5, and R8 determines the diffraction
efficiency of the zeroth order. The negative first order is
decided by R3, R6, and R9. Hence, the total complex am-
plitudes of this reflective grating are Eþ1 ¼ R1 þ R4 þ R7,
E0 ¼ R2 þ R5 þ R8, and E−1 ¼ R3 þ R6 þ R9. The effi-
ciency can be obtained using

η�1 ¼ jEþ1j2 ¼ jE−1j2 ¼ je1ðee0 þ ee−2 þ e0Þ expðiαÞj2;
(13)

η0 ¼ jE0j2 ¼ jð2e1ee−1 þ e20Þ expðiαÞj2: (14)

In this Letter, a 1 × 3 beam splitter is designed, where
η0 ¼ ηþ1 ¼ η−1 is required. Therefore, for a 1 × 3 splitting
triangular grating with period of 1290 nm operating in the
800 nm wavelength under normal incidence, the depth can
be obtained using Eqs. (8) to (14) and is equal to 533 nm
approximately when neglecting the evanescent wave.

The gratings can be made on a photoresist by the lithog-
raphy technique[24,25]. We have already built a DLW lithog-
raphy system based on a Dammann grating[26–30]; it has the
advantages of being low cost, having low requirements for
the environment, and having a high flexibility. A DLW
system based on a rotating Dammann grating is shown
in Fig. 5.

The method of the rotating Dammann grating is a more
flexible way and can improve the precision of the period.
The period of designed grating is

T ¼ d0 cos φ; (15)

where d0 is the initial period based on the Dammann gra-
ting, and φ is the rotation angle. In this setup, a 1 × 6
Dammann grating is applied. According to the design
of whole system, the initial period d0 is 1861.68 nm. There-
fore, the rotation angle φ is about 46.01°.

The 1 × 3 triangular grating is written directly on the
photoresist mask. Figure 6 is the angular spectrum that

Fig. 4. Diffraction process of the metal-mirror-based reflective
grating.
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shows the theoretical efficiency with optimal parameters
and experimental values of the �1st order and the zeroth
order for different incident angles at the wavelength of
800 nm for TE polarization.
The experimental values basically agree with the theo-

retical values. Figure 7 is the atomic force microscopy
(AFM) results of the fabricated grating. From the
AFM results, the measured values of the period and depth
are 1295 and 529 nm. The structure is similar to a triangle,
which is consistent with the theoretical design. The effi-
ciency of this fabricated beam splitter can reach approx-
imately 88%.
There are differences between the measured results and

the optimal values. The uncertainties associated with the
experimental results are the measurement errors, the
writing lithography errors, and the processing technology.
Another important factor is that the groove structure ap-
proximates to the triangular structure because the distri-
bution of the energy of the laser spot is a Gaussian
distribution. Hence, the deviations of the grating period
and the groove depth from the optimal parameters as
well as the deviation of the grating profile from the

standard triangular groove can all influence the efficiency.
In addition, the slight roughness of the grating surface
may also decrease the efficiency. Most uncertainties are
not quantified. The difference between the about 98%
design efficiency and the 88% experimental efficiency falls
within the experimental uncertainty.

In conclusion, we analyze and fabricate a 1 × 3 reflec-
tive triangular Dammann grating operating in the
800 nm wavelength under normal incidence for TE polari-
zation with a high efficiency of more than 98%. Based on
the former simplified modal analysis, the mechanism of
the 1 × 3 reflective triangular Dammann grating is pre-
sented in this Letter. The simplified modal method gives
a brief explanation from the aspect of physics mainly. We
offer the guidelines for the design of a 1 × 3 beam splitter
grating. The experimental efficiency of this beam splitter
is about 88%.
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Science Foundation of China (NSFC) (Nos. 61307064
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