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The common and traditional method for optical dispersion compensation is concatenating the transmitting
optical fiber by a compensating optical fiber having a high-negative dispersion coefficient. In this Letter, we
take the opposite direction and show how an optical fiber with a high-positive dispersion coefficient is used
for dispersion compensation. Our optical dispersion compensating structure is the optical implementation of
an iterative algorithm in signal processing. The proposed dispersion compensating system is constructed by
cascading a number of compensating sub-systems, and its compensation capability is improved by increasing
the number of embedded sub-systems. We also show that the compensation capability is a trade-off between the
transmission length and bandwidth. We use the simulation results to validate the performance of the introduced
dispersion compensating module. Photonic crystal fibers with high-positive dispersion coefficients can be used for
constructing the proposed optical dispersion compensating module.

OCIS codes: 060.2360, 070.0070, 070.1170, 060.0060.
doi: 10.3788/COL201715.030601.

Since the revolution of fiber optic communications in the
90s, millions of kilometers of optical fibers have been laid
all over the world to convey the ever-growing data streams
primarily driven by the exponential increase in communi-
cated video and data traffic. This exponential growth in
data traffic is met through increasing per-channel bit rates
or numbers of accommodated sub-channels using tech-
niques such as wavelength division multiplexing (WDM)
or optical orthogonal frequency division multiplexing
(O-OFDM)[1–4]. Increasing the per-channel bit rate requires
the transmission of narrower optical pulses, which multi-
plies the signal degradation due to the high amount of ac-
cumulated chromatic dispersion during pulse propagation
through the optical fiber. This high amount of dispersion
may result in inter-symbol interference (ISI), information
loss, and an increased bit error rate (BER) value. On the
other hand, increasing the number of accommodated
sub-channels results in reduced space between adjacent
sub-channels, more transmitted optical power, and more
sensitivity to destructive fiber nonlinear effects. Conse-
quently, both increasing the per-channel bit rate and the
number of accommodated sub-channels lead to excessive
sensitivity to certain fiber impairments that degrade the
clean transmission of the optical signal[5]. Practically, the
increased optical power along with tighter sub-channel
spacing and longer transmission distances translate to a
trade-off between nonlinear propagation effects and chro-
matic dispersion in a fiber optic communication system[6].
Today’s advanced optical fibers are designed such that
they exhibit finite dispersion in the transmission band.This
finite amount of dispersion reduces the growth of nonlinear
effects such as four-wave mixing (FWM) and cross-phase
modulation, which are particularly deleterious in WDM
and O-OFDM communication systems[7,8]. In order to

resolve the ISI and BER forced by the mentioned finite
amount of dispersion, proper dispersion compensating
techniques have been proposed to compensate for the accu-
mulated dispersion in the propagated pulse through the
optical fiber. Compensation can be achieved in the optical
domain by the use of different dispersion compensation de-
vices, such as dispersion compensating gratings, dispersion
compensating fibers (DCFs), dispersion compensating
arrayed waveguides, etc.[5,9,10]. Electronic dispersion com-
pensators are also proposed to compensate for the accumu-
lated dispersion in the electrical domain[11,12].

Conventional DCFs are suitably constructed optical
fibers with an appropriate refractive index profile such
that they exhibit the desired dispersion value at the wave-
length of operation. Since the dispersion coefficient of the
transmission optical fiber is usually positive, the conven-
tional DCF should exhibit a negative dispersion coeffi-
cient. They should also have dispersion slope matching,
low bend loss, low propagation loss, and a relatively large
mode effective area[5,13]. Design trade-offs to meet some of
these requirements are necessary, e.g., a small dispersion
coefficient is usually characterized by a small mode effec-
tive area and, consequently, large nonlinear effects and
vice versa[5,6,9,13]. In this Letter, we take the opposite direc-
tion and show how an optical fiber with a high-positive
dispersion coefficient can also be used to compensate for
the dispersion. In fact, our compensating procedure is an
adoption of an iterative method in signal processing that
uses a given system to implement its inverse system[14]. The
proposed dispersion compensating structure is a cascade
repetition of a sub-system, and its compensation capabil-
ity is improved by a higher number of cascaded sub-
systems in the structure. Furthermore, the capability of
the proposed dispersion compensating technique is a
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trade-off between the transmission length and bandwidth.
It is noteworthy that the introduced structure can simul-
taneously compensate for the dispersion, dispersion slope,
and other high-order dispersions. Photonic crystal fibers
(PCFs) with high-positive dispersion and low attenuation
coefficients can be considered as a main candidates for
constructing the offered compensating module[10,15,16].
The high-positive dispersion and low attenuation coeffi-
cients of these PCFs improve the compensation ability
of our structure by providing dispersion compensation
with lower latency, attenuation, and sensitivity to nonlin-
ear effects in comparison with conventional DCFs.
To proceed, we present a brief survey of chromatic

dispersion and its mathematical model. Following a con-
cise review of the mentioned iterative method, we intro-
duce and analyze our new dispersion compensating
system and validate its performance using the simulation
results.
One of the most significant impairments in fiber optic

communication systems is chromatic dispersion. The light
pulses propagating along the optical fiber become
distorted because the different spectral components of the
signal travel at different speeds and hence experience dif-
ferent propagation delays during transmission. This
means those parts of the signal will reach the receiver
at different time instants, which results in temporal pulse
distortion and broadening. The dispersion is characterized
by the parameter D, which describes how the pulse is
broadened. Assuming that the fiber is a cylindrical dielec-
tric waveguide along the z-axis, the wave propagation in
the frequency domain along the positive z-coordinate is
given by[6,9,17]

Eðz;ωÞ ¼ Eð0;ωÞe−jβðωÞz ; (1)

where Eð0;ωÞ and Eðz;ωÞ are pulse fields at angular fre-
quency ω and distances 0 and z with respect to the origin,
respectively, and βðωÞ is the fiber frequency-dependent
propagation constant. Assuming that the spectral width
Δω ¼ ω− ω0 is much smaller than the carrier frequency
ω0 ¼ 2πc∕λ0, the Taylor series expansion of the propaga-
tion constant βðωÞ around ω0 is

βðωÞ ¼ nðωÞω
c
¼

X∞
i¼0

βi
i!
ðΔωÞi ; (2)

where the series coefficients are written as βi ¼ βðiÞðω0Þ, in
which βðiÞðωÞ stands for i-th order derivative with respect
to ω. The group delay per unit of length is τðωÞ ¼ βð1ÞðωÞ.
The first term of Eq. (2) represents a frequency indepen-
dent phase rotation that can be disregarded for the propa-
gation of the pulse. The second parameter β1 is equal to
the group delay per unit of length at the carrier frequency
and also equals the inverse of the group velocity at the
carrier frequency, i.e., β1 ¼ 1∕V ðω0Þ, V ðω0Þ ¼ c∕nðω0Þ,
where nðωÞ is the frequency-dependent refractive index.
The third term of Eq. (2) describes first-order chromatic

dispersion and, sometimes, it is called the group velocity
dispersion. Chromatic dispersion parameter β2 is respon-
sible for the linear variation of the group delay with the
frequency. Commonly, the chromatic dispersion param-
eter is characterized in terms of Δλ instead of Δω:

D ¼ dτ
dλ

¼ −
2πc
λ20

β2; (3)

where D is the mentioned dispersion coefficient, and its
unit is usually expressed as ps/nm/km. Other parameters
βi , i ∈ f3; 4;…g are related to high-order dispersions and
are usually neglected in comparison with the main
dispersion parameter β2. Clearly, the effect of dispersion
on the pulse propagation through the optical fiber is totally
characterized by the dispersion transfer function HDðωÞ,

HDðωÞ ¼ e−jz
P

∞
i¼2

βi
i! ðΔωÞi : (4)

For a better understanding of the chromatic dispersion
effect in the time domain, we can study the propagation
model of Gaussian pulses inside the optical fiber.
Assume that initial field of the pulse is Eð0; tÞ ¼
E0 expð−t2∕ð2T 2

0ÞÞ, where E0 is the peak amplitude,
and T 0 is the half-width at the 1∕e intensity point. As
shown in Ref. [9], during its propagation along the fiber,
the Gaussian pulse keeps its Gaussian shape; however, the
pulse width increases with the propagation distance z,
resulting in a broadening factor given by

T1

T0
¼

����������������������������
1þ

�
zjβ2j
T2

0

�
2

s
; (5)

whereT1 represents the received half-width defined similar
to T 0.

The iterative method is a systematic technique in which
successive operations of a given operator are used to pro-
vide an estimate of its corresponding inverse operation[14].
Consider an arbitrary operator named Hfg and let Ifg be
the identity operator. Defining Efg ¼ Ifg− Hfg as error
operator, Ekfgmeans k consecutive operations of the error
operator. It can be shown that H−1fg, the inverse of the
operator Hfg, can be calculated as follows:

H−1fg ¼ Ifg þ Efg þ E2fg þ � � � þ Ekfg þ � � � ; (6)

provided that Efg is linear and its operator norm
‖E‖ ¼ ‖I − H‖ is less than 1[14]. For sufficiently large val-
ues of k, Eq. (6) provides an approximation of the inverse
operator H−1fg. Figure 1 shows a systematic realization
for Eq. (6) that is referred to as direct implementation.
Consider x0 as the input signal (operand). According to
Fig. 1, xk ¼ x0 þ Efxk−1g and, therefore, we can recur-
sively write

0:x0 ¼ Ifx0g; (7)

1:x1 ¼ x0 þ Efx0g ¼ Ifx0g þ Efx0g; (8)
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2:x2 ¼ x0 þ Efx1g ¼ x0 þ Efx0 þ Efx0gg
¼ Ifx0g þ Efx0g þ E2fx0g; (9)

3:x3 ¼ x0 þ Efx2g ¼ Ifx0g þ Efx0 þ Efx1gg
¼ Ifx0g þ Efx0g þ EfEfx1gg
¼ Ifx0g þ Efx0g þ E2fx0g þ E3fx0g: (10)

Finally, after stage K ,

K :xK ¼ x0 þ EfxK−1g
¼ Ifx0g þ Efx0g þ E2fx0g þ � � � þ EKfx0g; (11)

which is the approximate implementation of Eq. (6). As
shown in Fig. 2, the inverse operator can also iteratively
be realized by feedbacking the output of the highlighted
part in Fig. 1 to its input. Feedback implementation is
suitable for digital systems in which the number of itera-
tions in a feedback loop can easily be controlled, while di-
rect implementation is usually used for analog systems. In
the digital implementation of the iterative method, signal
x0, which is a vector of the input signal samples, is received
and then cycles K times in the shown loop of Fig. 2. After
K cycles, xK is transferred to the output and a new vector
of the input signal samples is fed to the structure[14]. To
change the convergence time or extend the convergence
region, a scaling factor μ can be included in the definition
of the error operator Efg ¼ Ifg− μHfg. Increasing μ de-
creases the convergence time at the cost of reducing the
convergence region[14]. The iterative method has been suc-
cessfully used for interference cancellation in optical code
division multiple access systems via optical logic gate
elements. Furthermore, its applications for mitigating

the peak to average power ratio problem in optical OFDM
systems are evolving[18,19].

Now, consider the structure shown in Fig. 3. This struc-
ture is an optical adoption of the introduced iterative
method that implements the inverse of the chromatic
dispersion transfer function using high-positive dispersive
optical fibers. Note that the chromatic dispersion transfer
function is a linear operation and, consequently, its inverse
operation can be realized using the iterative method. Sub-
systemEðωÞ gets an input optical signal, divides it between
two optical fibers, and constructs the output optical signal
by subtracting the outputs of the optical fibers[6,20,21]. We
assume the optical fiber in the up branch of the sub-system
is an ordinary optical fiber with characterizing parameters
βSMF
i , i ∈ f0; 1; 2;…g, and lengthL, while the optical fiber in

the down branch is a special optical fiber with characteriz-
ing parameters βPCFi , i ∈ f0; 1; 2;…g and lengthL such that
βSMF
i ≈ βPCFi , i ∈ f0; 1g and βPCFi ∕βSMF

i ≫ 1, i ∈ f2; 3;…g.
A well-designed high-positive dispersive PCF can satisfy
the requirements of the optical fiber in the down branch
of the sub-system. If the attenuator in the down branch
has an attenuation coefficient α, the transfer function of
the sub-system is given by

EðωÞ ¼
���
1
2

r
e−jL

P
∞
i¼0

βSMF
i
i! ðΔωÞi þ ejπ

���
α

2

r
e−jL

P
∞
i¼0

βPCF
i
i! ðΔωÞi

≈
���
1
2

r
e−jLðβSMF

0 þβSMF
1 ΔωÞ

�
1−

���
α

p
e−jL

P
∞
i¼2

βPCF
i
i! ðΔωÞi

�

¼
���
1
2

r
e−jLðβSMF

0 þβSMF
1 ΔωÞEDðωÞ: (12)

In Fig. 3, the optical fiber below each embedded sub-
system has the same characterizing parameters as the
optical fiber in the up branch of the sub-system. Referring
to Eq. (12) and assuming K cascaded copies of the

{}E +
0x

+{}E1x 1Kx − Kx

Fig. 1. Direct implementation of the iterative method, which is a
cascaded repetition of the highlighted part. Each highlighted
part is an error operator followed by an add operation.

+{}E
1Kx − Kx

0x

Fig. 2. Feedback implementation of the iterative method, which
is a closed-loop system constructed of the highlighted part of
Fig. 1. The input signal should cycleK times in the feedback loop
to provide an output equivalent to the output of the direct im-
plementation, with K repetitions of the highlighted part.

E + E

SMF

+G

Amplifier

Coupler

In Out

Splitter

E

PCF

AttenuatorG

+

180

180
180 Phase 

Shifter

+

Fig. 3. Block diagram of the proposed dispersion compensating
structure, including 2 cascaded sub-systems E.
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analyzed sub-system, one can easily check that the total
transfer function of the system H−1

D ðωÞ is simplified as

H−1
D ðωÞ ¼

�����������
G

2Kþ1

r
e−jKLðβSMF

0 þβSMF
1 ΔωÞ XK

k¼0

Ek
DðωÞ: (13)

For a sufficiently large number of cascaded sub-systems
K and for jEDðωÞj < 1,

H−1
D ðωÞ ¼

��������������
G

α2Kþ1

r
e−jKLðβSMF

0 þβSMF
1 ΔωÞejL

P
∞
i¼2

βPCF
i
i! ðΔωÞi ;

(14)

which is the desired inverse transfer function of the
chromatic dispersion with a causal delay coefficient.
Assume we want to compensate for the chromatic

dispersion of an optical fiber with characterizing
parameters βFIBi , i ∈ f0; 1; 2;…g and length z. If we set
βPCFi L ¼ βFIBi z, i ∈ f2; 3;…g and G ¼ α2Kþ1, the proposed
structure can totally remove the dispersion if

jEDðωÞj ¼
����1− ���

α
p

e−jL
P

∞
i¼2

βPCF
i
i! ðΔωÞi

���� < 1; (15)

By neglecting high-order dispersion coefficients βFIBi , i ∈
f3; 4;…g against the main dispersion coefficient βFIB2 ,
Eq. (15) implies that we have the following trade-off
between the transmission length and bandwidth for a
stable dispersion compensation:

1
2
jβFIB2 jðΔωÞ2z < cos−1

� ���
α

p
2

�
: (16)

It is noteworthy that the optical amplifier of the pro-
posed structure can be merged with the receiver amplifier
and its other parts can totally be constructed using passive
optical elements. Furthermore, the length of the required
compensating fibers L, the compensation delay, and the
compensation attenuation are reduced for higher values
of jβPCF2 j.
Figure 4 shows the two-dimensional region of transmis-

sion length z (in logarithmic scale and units of km) and
bandwidth B ¼ maxfjΔωjg∕π (in linear scale and units
of GHz) values for which the introduced system can be
stable and compensate for the dispersion. We refer to this
region as the convergence region. As illustrated, the boun-
dary of this region is governed by the explicit trade-off be-
tween the transmission length and bandwidth in Eq. (16),
and its area is extended for lower values of dispersion co-
efficient DFIB or attenuation coefficient α. Now, consider a
sinc-shaped optical pulse with a given zero-to-zero pulse
width and its corresponding bandwidth B. This pulse is
conveyed by a carrier wavelength λ0 ¼ 1550 nm over an
optical fiber having the second-order dispersion parameter
βFIB2 and length z. We use the proposed system to compen-
sate for the accumulated dispersion in the sinc-shaped
pulse propagated through this optical fiber. Figure 5

shows the simulated broadening factor of the compensated
pulse (i.e., the ratio of the received pulse width to the
transmitted pulse width) in terms of the number of em-
bedded sub-systems E in the compensating system for
various values of jβFIB2 jzð2πBÞ2 and attenuation coefficient
α. Clearly, the compensation performance is increased for
higher numbers of cascaded sub-systems. Furthermore, a
pulse with a lower bandwidth and transmission distance
needs a lower number of sub-systems to get a desired
dispersion compensated level. The simulation results also
show decreasing the attenuation coefficient α decreases
the convergence speed, but as interpreted from Fig. 4, this
can extend the convergence region to include a desired
pair of transmission length and bandwidth.

Fig. 4. Two-dimensional region of transmission length z and
bandwidth B values for which the proposed system can stably
compensate for dispersion.

Fig. 5. Broadening factor for a sinc-shaped optical pulse con-
veyed by carrier wavelength λ0 ¼ 1550 nm in terms of the num-
ber of cascaded sub-systems E in the compensating structure for
various values of jβFIB2 jzð2πBÞ2 and attenuation coefficient α.
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Assume that we desire to compensate for the accumu-
lated dispersion of a single-channel optical signal with a
3 GHz bandwidth and a 1550 nm carrier wavelength that
propagates through a 130 km standard single-mode optical
fiber such that a broadening factor of 1.1 is achieved at the
receiver side. Since jβFIB2 jzð2πBÞ2 ≈ 1, Fig. 5 shows that our
proposed dispersion compensating module, including 1
embedded sub-system, can provide the desired compen-
sated broadening factor. If DPCF ≈ 2200 ps∕nm∕km (or,
equivalently, βPCF2 ≈−2718 ps2∕km), the signal propaga-
tion path of the proposed compensating structure will be
around 1 km. As the simulation results show, the desired
level of the compensated broadening factor can also be ob-
tained using a sample DCFwithDDCF ¼ −250 ps∕nm∕km
and an approximated propagation path of 7 km[13]. The
propagation path in the proposed module is shorter than
its counterpart DCF, and hence, it has a potential to
provide lower attenuation and delay during the compensa-
tion process.
In conclusion, we take the opposite direction with re-

spect to the conventional DCFs and show how an optical
fiber with a high-positive dispersion coefficient is used for
dispersion compensation. We propose an optical structure
based on a well-known iterative algorithm in signal
processing in which the dispersion inverse transfer func-
tion is implemented using high-positive dispersive optical
fibers. We show that the dispersion compensation capabil-
ity of the proposed module is a trade-off between the
transmission length and bandwidth and is enhanced for
the compensating structure, including more dispersion
compensating sub-systems. We also specify how system
parameters should change to stabilize or speed up the
system performance.
Generally, the concepts and ideas behind the proposed

structure can be used in developing other innovative op-
tical modules, such as optical filters and other optical im-
pairment compensating structures. It is noteworthy that
the optical implementation of the proposed structure
can be facilitated using progressing technologies such as
photonic integrated circuits[22], optical analog field pro-
grammable gate arrays[23], optical logic gates[18], and archi-
tectures on demand[6]. In addition, one may work on
electronic dispersion compensation using the iterative
method. Clearly, implementation of the iterative method

in electronic domain is more straightforward than its
equivalent optical implementation.
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